Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tbwlem4 Structured version   Unicode version

Theorem tbwlem4 1482
 Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tbwlem4

Proof of Theorem tbwlem4
StepHypRef Expression
1 tbw-ax4 1477 . . . . 5
2 tbw-ax1 1474 . . . . . 6
3 tbwlem1 1479 . . . . . 6
42, 3ax-mp 8 . . . . 5
51, 4ax-mp 8 . . . 4
6 tbwlem1 1479 . . . 4
75, 6ax-mp 8 . . 3
8 tbw-ax1 1474 . . . 4
9 tbwlem1 1479 . . . 4
108, 9ax-mp 8 . . 3
117, 10ax-mp 8 . 2
12 tbwlem2 1480 . . 3
13 tbwlem3 1481 . . 3
1412, 13tbwsyl 1478 . 2
1511, 14tbwsyl 1478 1
 Colors of variables: wff set class Syntax hints:   wi 4   wfal 1326 This theorem is referenced by:  tbwlem5  1483  re1luk2  1485 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 178  df-tru 1328  df-fal 1329
 Copyright terms: Public domain W3C validator