MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tc2 Structured version   Unicode version

Theorem tc2 7710
Description: A variant of the definition of the transitive closure function, using instead the smallest transitive set containing  A as a member, gives almost the same set, except that  A itself must be added because it is not usually a member of  ( TC `  A
) (and it is never a member if  A is well-founded). (Contributed by Mario Carneiro, 23-Jun-2013.)
Hypothesis
Ref Expression
tc2.1  |-  A  e. 
_V
Assertion
Ref Expression
tc2  |-  ( ( TC `  A )  u.  { A }
)  =  |^| { x  |  ( A  e.  x  /\  Tr  x
) }
Distinct variable group:    x, A

Proof of Theorem tc2
StepHypRef Expression
1 tc2.1 . . . . 5  |-  A  e. 
_V
2 tcvalg 7706 . . . . 5  |-  ( A  e.  _V  ->  ( TC `  A )  = 
|^| { x  |  ( A  C_  x  /\  Tr  x ) } )
31, 2ax-mp 5 . . . 4  |-  ( TC
`  A )  = 
|^| { x  |  ( A  C_  x  /\  Tr  x ) }
4 trss 4336 . . . . . . 7  |-  ( Tr  x  ->  ( A  e.  x  ->  A  C_  x ) )
54imdistanri 674 . . . . . 6  |-  ( ( A  e.  x  /\  Tr  x )  ->  ( A  C_  x  /\  Tr  x ) )
65ss2abi 3401 . . . . 5  |-  { x  |  ( A  e.  x  /\  Tr  x
) }  C_  { x  |  ( A  C_  x  /\  Tr  x ) }
7 intss 4095 . . . . 5  |-  ( { x  |  ( A  e.  x  /\  Tr  x ) }  C_  { x  |  ( A 
C_  x  /\  Tr  x ) }  ->  |^|
{ x  |  ( A  C_  x  /\  Tr  x ) }  C_  |^|
{ x  |  ( A  e.  x  /\  Tr  x ) } )
86, 7ax-mp 5 . . . 4  |-  |^| { x  |  ( A  C_  x  /\  Tr  x ) }  C_  |^| { x  |  ( A  e.  x  /\  Tr  x
) }
93, 8eqsstri 3364 . . 3  |-  ( TC
`  A )  C_  |^|
{ x  |  ( A  e.  x  /\  Tr  x ) }
101elintab 4085 . . . . 5  |-  ( A  e.  |^| { x  |  ( A  e.  x  /\  Tr  x ) }  <->  A. x ( ( A  e.  x  /\  Tr  x )  ->  A  e.  x ) )
11 simpl 445 . . . . 5  |-  ( ( A  e.  x  /\  Tr  x )  ->  A  e.  x )
1210, 11mpgbir 1560 . . . 4  |-  A  e. 
|^| { x  |  ( A  e.  x  /\  Tr  x ) }
131snss 3950 . . . 4  |-  ( A  e.  |^| { x  |  ( A  e.  x  /\  Tr  x ) }  <->  { A }  C_  |^| { x  |  ( A  e.  x  /\  Tr  x
) } )
1412, 13mpbi 201 . . 3  |-  { A }  C_  |^| { x  |  ( A  e.  x  /\  Tr  x ) }
159, 14unssi 3508 . 2  |-  ( ( TC `  A )  u.  { A }
)  C_  |^| { x  |  ( A  e.  x  /\  Tr  x
) }
161snid 3865 . . . . 5  |-  A  e. 
{ A }
17 elun2 3501 . . . . 5  |-  ( A  e.  { A }  ->  A  e.  ( ( TC `  A )  u.  { A }
) )
1816, 17ax-mp 5 . . . 4  |-  A  e.  ( ( TC `  A )  u.  { A } )
19 uniun 4058 . . . . . . 7  |-  U. (
( TC `  A
)  u.  { A } )  =  ( U. ( TC `  A )  u.  U. { A } )
20 tctr 7708 . . . . . . . . 9  |-  Tr  ( TC `  A )
21 df-tr 4328 . . . . . . . . 9  |-  ( Tr  ( TC `  A
)  <->  U. ( TC `  A )  C_  ( TC `  A ) )
2220, 21mpbi 201 . . . . . . . 8  |-  U. ( TC `  A )  C_  ( TC `  A )
231unisn 4055 . . . . . . . . 9  |-  U. { A }  =  A
24 tcid 7707 . . . . . . . . . 10  |-  ( A  e.  _V  ->  A  C_  ( TC `  A
) )
251, 24ax-mp 5 . . . . . . . . 9  |-  A  C_  ( TC `  A )
2623, 25eqsstri 3364 . . . . . . . 8  |-  U. { A }  C_  ( TC
`  A )
2722, 26unssi 3508 . . . . . . 7  |-  ( U. ( TC `  A )  u.  U. { A } )  C_  ( TC `  A )
2819, 27eqsstri 3364 . . . . . 6  |-  U. (
( TC `  A
)  u.  { A } )  C_  ( TC `  A )
29 ssun1 3496 . . . . . 6  |-  ( TC
`  A )  C_  ( ( TC `  A )  u.  { A } )
3028, 29sstri 3343 . . . . 5  |-  U. (
( TC `  A
)  u.  { A } )  C_  (
( TC `  A
)  u.  { A } )
31 df-tr 4328 . . . . 5  |-  ( Tr  ( ( TC `  A )  u.  { A } )  <->  U. (
( TC `  A
)  u.  { A } )  C_  (
( TC `  A
)  u.  { A } ) )
3230, 31mpbir 202 . . . 4  |-  Tr  (
( TC `  A
)  u.  { A } )
33 fvex 5771 . . . . . 6  |-  ( TC
`  A )  e. 
_V
34 snex 4434 . . . . . 6  |-  { A }  e.  _V
3533, 34unex 4736 . . . . 5  |-  ( ( TC `  A )  u.  { A }
)  e.  _V
36 eleq2 2503 . . . . . 6  |-  ( x  =  ( ( TC
`  A )  u. 
{ A } )  ->  ( A  e.  x  <->  A  e.  (
( TC `  A
)  u.  { A } ) ) )
37 treq 4333 . . . . . 6  |-  ( x  =  ( ( TC
`  A )  u. 
{ A } )  ->  ( Tr  x  <->  Tr  ( ( TC `  A )  u.  { A } ) ) )
3836, 37anbi12d 693 . . . . 5  |-  ( x  =  ( ( TC
`  A )  u. 
{ A } )  ->  ( ( A  e.  x  /\  Tr  x )  <->  ( A  e.  ( ( TC `  A )  u.  { A } )  /\  Tr  ( ( TC `  A )  u.  { A } ) ) ) )
3935, 38elab 3088 . . . 4  |-  ( ( ( TC `  A
)  u.  { A } )  e.  {
x  |  ( A  e.  x  /\  Tr  x ) }  <->  ( A  e.  ( ( TC `  A )  u.  { A } )  /\  Tr  ( ( TC `  A )  u.  { A } ) ) )
4018, 32, 39mpbir2an 888 . . 3  |-  ( ( TC `  A )  u.  { A }
)  e.  { x  |  ( A  e.  x  /\  Tr  x
) }
41 intss1 4089 . . 3  |-  ( ( ( TC `  A
)  u.  { A } )  e.  {
x  |  ( A  e.  x  /\  Tr  x ) }  ->  |^|
{ x  |  ( A  e.  x  /\  Tr  x ) }  C_  ( ( TC `  A )  u.  { A } ) )
4240, 41ax-mp 5 . 2  |-  |^| { x  |  ( A  e.  x  /\  Tr  x
) }  C_  (
( TC `  A
)  u.  { A } )
4315, 42eqssi 3350 1  |-  ( ( TC `  A )  u.  { A }
)  =  |^| { x  |  ( A  e.  x  /\  Tr  x
) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1727   {cab 2428   _Vcvv 2962    u. cun 3304    C_ wss 3306   {csn 3838   U.cuni 4039   |^|cint 4074   Tr wtr 4327   ` cfv 5483   TCctc 7704
This theorem is referenced by:  tcsni  7711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-inf2 7625
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-recs 6662  df-rdg 6697  df-tc 7705
  Copyright terms: Public domain W3C validator