MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tchcphlem1 Structured version   Unicode version

Theorem tchcphlem1 19197
Description: Lemma for tchcph 19199: the triangle inequality. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tchval.n  |-  G  =  (toCHil `  W )
tchcph.v  |-  V  =  ( Base `  W
)
tchcph.f  |-  F  =  (Scalar `  W )
tchcph.1  |-  ( ph  ->  W  e.  PreHil )
tchcph.2  |-  ( ph  ->  F  =  (flds  K ) )
tchcph.h  |-  .,  =  ( .i `  W )
tchcph.3  |-  ( (
ph  /\  ( x  e.  K  /\  x  e.  RR  /\  0  <_  x ) )  -> 
( sqr `  x
)  e.  K )
tchcph.4  |-  ( (
ph  /\  x  e.  V )  ->  0  <_  ( x  .,  x
) )
tchcph.k  |-  K  =  ( Base `  F
)
tchcph.m  |-  .-  =  ( -g `  W )
tchcphlem1.3  |-  ( ph  ->  X  e.  V )
tchcphlem1.4  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
tchcphlem1  |-  ( ph  ->  ( sqr `  (
( X  .-  Y
)  .,  ( X  .-  Y ) ) )  <_  ( ( sqr `  ( X  .,  X
) )  +  ( sqr `  ( Y 
.,  Y ) ) ) )
Distinct variable groups:    x,  .-    x,  .,    x, F    x, G    x, V    ph, x    x, W    x, X    x, Y
Allowed substitution hint:    K( x)

Proof of Theorem tchcphlem1
StepHypRef Expression
1 tchcph.1 . . . . . . 7  |-  ( ph  ->  W  e.  PreHil )
2 phllmod 16866 . . . . . . 7  |-  ( W  e.  PreHil  ->  W  e.  LMod )
3 lmodgrp 15962 . . . . . . 7  |-  ( W  e.  LMod  ->  W  e. 
Grp )
41, 2, 33syl 19 . . . . . 6  |-  ( ph  ->  W  e.  Grp )
5 tchcphlem1.3 . . . . . 6  |-  ( ph  ->  X  e.  V )
6 tchcphlem1.4 . . . . . 6  |-  ( ph  ->  Y  e.  V )
7 tchcph.v . . . . . . 7  |-  V  =  ( Base `  W
)
8 tchcph.m . . . . . . 7  |-  .-  =  ( -g `  W )
97, 8grpsubcl 14874 . . . . . 6  |-  ( ( W  e.  Grp  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y
)  e.  V )
104, 5, 6, 9syl3anc 1185 . . . . 5  |-  ( ph  ->  ( X  .-  Y
)  e.  V )
11 tchval.n . . . . . 6  |-  G  =  (toCHil `  W )
12 tchcph.f . . . . . 6  |-  F  =  (Scalar `  W )
13 tchcph.2 . . . . . 6  |-  ( ph  ->  F  =  (flds  K ) )
14 tchcph.h . . . . . 6  |-  .,  =  ( .i `  W )
1511, 7, 12, 1, 13, 14tchcphlem3 19195 . . . . 5  |-  ( (
ph  /\  ( X  .-  Y )  e.  V
)  ->  ( ( X  .-  Y )  .,  ( X  .-  Y ) )  e.  RR )
1610, 15mpdan 651 . . . 4  |-  ( ph  ->  ( ( X  .-  Y )  .,  ( X  .-  Y ) )  e.  RR )
1711, 7, 12, 1, 13, 14tchcphlem3 19195 . . . . . . 7  |-  ( (
ph  /\  X  e.  V )  ->  ( X  .,  X )  e.  RR )
185, 17mpdan 651 . . . . . 6  |-  ( ph  ->  ( X  .,  X
)  e.  RR )
1911, 7, 12, 1, 13, 14tchcphlem3 19195 . . . . . . 7  |-  ( (
ph  /\  Y  e.  V )  ->  ( Y  .,  Y )  e.  RR )
206, 19mpdan 651 . . . . . 6  |-  ( ph  ->  ( Y  .,  Y
)  e.  RR )
2118, 20readdcld 9120 . . . . 5  |-  ( ph  ->  ( ( X  .,  X )  +  ( Y  .,  Y ) )  e.  RR )
2211, 7, 12, 1, 13tchclm 19194 . . . . . . . . 9  |-  ( ph  ->  W  e. CMod )
23 tchcph.k . . . . . . . . . 10  |-  K  =  ( Base `  F
)
2412, 23clmsscn 19109 . . . . . . . . 9  |-  ( W  e. CMod  ->  K  C_  CC )
2522, 24syl 16 . . . . . . . 8  |-  ( ph  ->  K  C_  CC )
2612, 14, 7, 23ipcl 16869 . . . . . . . . 9  |-  ( ( W  e.  PreHil  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .,  Y )  e.  K )
271, 5, 6, 26syl3anc 1185 . . . . . . . 8  |-  ( ph  ->  ( X  .,  Y
)  e.  K )
2825, 27sseldd 3351 . . . . . . 7  |-  ( ph  ->  ( X  .,  Y
)  e.  CC )
2912, 14, 7, 23ipcl 16869 . . . . . . . . 9  |-  ( ( W  e.  PreHil  /\  Y  e.  V  /\  X  e.  V )  ->  ( Y  .,  X )  e.  K )
301, 6, 5, 29syl3anc 1185 . . . . . . . 8  |-  ( ph  ->  ( Y  .,  X
)  e.  K )
3125, 30sseldd 3351 . . . . . . 7  |-  ( ph  ->  ( Y  .,  X
)  e.  CC )
3228, 31addcld 9112 . . . . . 6  |-  ( ph  ->  ( ( X  .,  Y )  +  ( Y  .,  X ) )  e.  CC )
3332abscld 12243 . . . . 5  |-  ( ph  ->  ( abs `  (
( X  .,  Y
)  +  ( Y 
.,  X ) ) )  e.  RR )
3421, 33readdcld 9120 . . . 4  |-  ( ph  ->  ( ( ( X 
.,  X )  +  ( Y  .,  Y
) )  +  ( abs `  ( ( X  .,  Y )  +  ( Y  .,  X ) ) ) )  e.  RR )
3518recnd 9119 . . . . . 6  |-  ( ph  ->  ( X  .,  X
)  e.  CC )
36 2re 10074 . . . . . . . 8  |-  2  e.  RR
37 tchcph.4 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  V )  ->  0  <_  ( x  .,  x
) )
3837ralrimiva 2791 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  V 
0  <_  ( x  .,  x ) )
39 oveq12 6093 . . . . . . . . . . . . . 14  |-  ( ( x  =  X  /\  x  =  X )  ->  ( x  .,  x
)  =  ( X 
.,  X ) )
4039anidms 628 . . . . . . . . . . . . 13  |-  ( x  =  X  ->  (
x  .,  x )  =  ( X  .,  X ) )
4140breq2d 4227 . . . . . . . . . . . 12  |-  ( x  =  X  ->  (
0  <_  ( x  .,  x )  <->  0  <_  ( X  .,  X ) ) )
4241rspcv 3050 . . . . . . . . . . 11  |-  ( X  e.  V  ->  ( A. x  e.  V 
0  <_  ( x  .,  x )  ->  0  <_  ( X  .,  X
) ) )
435, 38, 42sylc 59 . . . . . . . . . 10  |-  ( ph  ->  0  <_  ( X  .,  X ) )
4418, 43resqrcld 12225 . . . . . . . . 9  |-  ( ph  ->  ( sqr `  ( X  .,  X ) )  e.  RR )
45 oveq12 6093 . . . . . . . . . . . . . 14  |-  ( ( x  =  Y  /\  x  =  Y )  ->  ( x  .,  x
)  =  ( Y 
.,  Y ) )
4645anidms 628 . . . . . . . . . . . . 13  |-  ( x  =  Y  ->  (
x  .,  x )  =  ( Y  .,  Y ) )
4746breq2d 4227 . . . . . . . . . . . 12  |-  ( x  =  Y  ->  (
0  <_  ( x  .,  x )  <->  0  <_  ( Y  .,  Y ) ) )
4847rspcv 3050 . . . . . . . . . . 11  |-  ( Y  e.  V  ->  ( A. x  e.  V 
0  <_  ( x  .,  x )  ->  0  <_  ( Y  .,  Y
) ) )
496, 38, 48sylc 59 . . . . . . . . . 10  |-  ( ph  ->  0  <_  ( Y  .,  Y ) )
5020, 49resqrcld 12225 . . . . . . . . 9  |-  ( ph  ->  ( sqr `  ( Y  .,  Y ) )  e.  RR )
5144, 50remulcld 9121 . . . . . . . 8  |-  ( ph  ->  ( ( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) )  e.  RR )
52 remulcl 9080 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  ( ( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) )  e.  RR )  ->  ( 2  x.  ( ( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) )  e.  RR )
5336, 51, 52sylancr 646 . . . . . . 7  |-  ( ph  ->  ( 2  x.  (
( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) )  e.  RR )
5453recnd 9119 . . . . . 6  |-  ( ph  ->  ( 2  x.  (
( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) )  e.  CC )
5520recnd 9119 . . . . . 6  |-  ( ph  ->  ( Y  .,  Y
)  e.  CC )
5635, 54, 55add32d 9293 . . . . 5  |-  ( ph  ->  ( ( ( X 
.,  X )  +  ( 2  x.  (
( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) )  +  ( Y  .,  Y
) )  =  ( ( ( X  .,  X )  +  ( Y  .,  Y ) )  +  ( 2  x.  ( ( sqr `  ( X  .,  X
) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) ) )
5721, 53readdcld 9120 . . . . 5  |-  ( ph  ->  ( ( ( X 
.,  X )  +  ( Y  .,  Y
) )  +  ( 2  x.  ( ( sqr `  ( X 
.,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) )  e.  RR )
5856, 57eqeltrd 2512 . . . 4  |-  ( ph  ->  ( ( ( X 
.,  X )  +  ( 2  x.  (
( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) )  +  ( Y  .,  Y
) )  e.  RR )
59 oveq12 6093 . . . . . . . . . . . 12  |-  ( ( x  =  ( X 
.-  Y )  /\  x  =  ( X  .-  Y ) )  -> 
( x  .,  x
)  =  ( ( X  .-  Y ) 
.,  ( X  .-  Y ) ) )
6059anidms 628 . . . . . . . . . . 11  |-  ( x  =  ( X  .-  Y )  ->  (
x  .,  x )  =  ( ( X 
.-  Y )  .,  ( X  .-  Y ) ) )
6160breq2d 4227 . . . . . . . . . 10  |-  ( x  =  ( X  .-  Y )  ->  (
0  <_  ( x  .,  x )  <->  0  <_  ( ( X  .-  Y
)  .,  ( X  .-  Y ) ) ) )
6261rspcv 3050 . . . . . . . . 9  |-  ( ( X  .-  Y )  e.  V  ->  ( A. x  e.  V 
0  <_  ( x  .,  x )  ->  0  <_  ( ( X  .-  Y )  .,  ( X  .-  Y ) ) ) )
6310, 38, 62sylc 59 . . . . . . . 8  |-  ( ph  ->  0  <_  ( ( X  .-  Y )  .,  ( X  .-  Y ) ) )
6416, 63absidd 12230 . . . . . . 7  |-  ( ph  ->  ( abs `  (
( X  .-  Y
)  .,  ( X  .-  Y ) ) )  =  ( ( X 
.-  Y )  .,  ( X  .-  Y ) ) )
6512clmadd 19104 . . . . . . . . . . . 12  |-  ( W  e. CMod  ->  +  =  ( +g  `  F ) )
6622, 65syl 16 . . . . . . . . . . 11  |-  ( ph  ->  +  =  ( +g  `  F ) )
6766oveqd 6101 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  .,  X )  +  ( Y  .,  Y ) )  =  ( ( X  .,  X ) ( +g  `  F
) ( Y  .,  Y ) ) )
6866oveqd 6101 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  .,  Y )  +  ( Y  .,  X ) )  =  ( ( X  .,  Y ) ( +g  `  F
) ( Y  .,  X ) ) )
6967, 68oveq12d 6102 . . . . . . . . 9  |-  ( ph  ->  ( ( ( X 
.,  X )  +  ( Y  .,  Y
) ) ( -g `  F ) ( ( X  .,  Y )  +  ( Y  .,  X ) ) )  =  ( ( ( X  .,  X ) ( +g  `  F
) ( Y  .,  Y ) ) (
-g `  F )
( ( X  .,  Y ) ( +g  `  F ) ( Y 
.,  X ) ) ) )
7012, 14, 7, 23ipcl 16869 . . . . . . . . . . . 12  |-  ( ( W  e.  PreHil  /\  X  e.  V  /\  X  e.  V )  ->  ( X  .,  X )  e.  K )
711, 5, 5, 70syl3anc 1185 . . . . . . . . . . 11  |-  ( ph  ->  ( X  .,  X
)  e.  K )
7212, 14, 7, 23ipcl 16869 . . . . . . . . . . . 12  |-  ( ( W  e.  PreHil  /\  Y  e.  V  /\  Y  e.  V )  ->  ( Y  .,  Y )  e.  K )
731, 6, 6, 72syl3anc 1185 . . . . . . . . . . 11  |-  ( ph  ->  ( Y  .,  Y
)  e.  K )
7412, 23clmacl 19113 . . . . . . . . . . 11  |-  ( ( W  e. CMod  /\  ( X  .,  X )  e.  K  /\  ( Y 
.,  Y )  e.  K )  ->  (
( X  .,  X
)  +  ( Y 
.,  Y ) )  e.  K )
7522, 71, 73, 74syl3anc 1185 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  .,  X )  +  ( Y  .,  Y ) )  e.  K )
7612, 23clmacl 19113 . . . . . . . . . . 11  |-  ( ( W  e. CMod  /\  ( X  .,  Y )  e.  K  /\  ( Y 
.,  X )  e.  K )  ->  (
( X  .,  Y
)  +  ( Y 
.,  X ) )  e.  K )
7722, 27, 30, 76syl3anc 1185 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  .,  Y )  +  ( Y  .,  X ) )  e.  K )
7812, 23clmsub 19110 . . . . . . . . . 10  |-  ( ( W  e. CMod  /\  (
( X  .,  X
)  +  ( Y 
.,  Y ) )  e.  K  /\  (
( X  .,  Y
)  +  ( Y 
.,  X ) )  e.  K )  -> 
( ( ( X 
.,  X )  +  ( Y  .,  Y
) )  -  (
( X  .,  Y
)  +  ( Y 
.,  X ) ) )  =  ( ( ( X  .,  X
)  +  ( Y 
.,  Y ) ) ( -g `  F
) ( ( X 
.,  Y )  +  ( Y  .,  X
) ) ) )
7922, 75, 77, 78syl3anc 1185 . . . . . . . . 9  |-  ( ph  ->  ( ( ( X 
.,  X )  +  ( Y  .,  Y
) )  -  (
( X  .,  Y
)  +  ( Y 
.,  X ) ) )  =  ( ( ( X  .,  X
)  +  ( Y 
.,  Y ) ) ( -g `  F
) ( ( X 
.,  Y )  +  ( Y  .,  X
) ) ) )
80 eqid 2438 . . . . . . . . . 10  |-  ( -g `  F )  =  (
-g `  F )
81 eqid 2438 . . . . . . . . . 10  |-  ( +g  `  F )  =  ( +g  `  F )
8212, 14, 7, 8, 80, 81, 1, 5, 6, 5, 6ip2subdi 16880 . . . . . . . . 9  |-  ( ph  ->  ( ( X  .-  Y )  .,  ( X  .-  Y ) )  =  ( ( ( X  .,  X ) ( +g  `  F
) ( Y  .,  Y ) ) (
-g `  F )
( ( X  .,  Y ) ( +g  `  F ) ( Y 
.,  X ) ) ) )
8369, 79, 823eqtr4rd 2481 . . . . . . . 8  |-  ( ph  ->  ( ( X  .-  Y )  .,  ( X  .-  Y ) )  =  ( ( ( X  .,  X )  +  ( Y  .,  Y ) )  -  ( ( X  .,  Y )  +  ( Y  .,  X ) ) ) )
8483fveq2d 5735 . . . . . . 7  |-  ( ph  ->  ( abs `  (
( X  .-  Y
)  .,  ( X  .-  Y ) ) )  =  ( abs `  (
( ( X  .,  X )  +  ( Y  .,  Y ) )  -  ( ( X  .,  Y )  +  ( Y  .,  X ) ) ) ) )
8564, 84eqtr3d 2472 . . . . . 6  |-  ( ph  ->  ( ( X  .-  Y )  .,  ( X  .-  Y ) )  =  ( abs `  (
( ( X  .,  X )  +  ( Y  .,  Y ) )  -  ( ( X  .,  Y )  +  ( Y  .,  X ) ) ) ) )
8625, 75sseldd 3351 . . . . . . 7  |-  ( ph  ->  ( ( X  .,  X )  +  ( Y  .,  Y ) )  e.  CC )
8786, 32abs2dif2d 12265 . . . . . 6  |-  ( ph  ->  ( abs `  (
( ( X  .,  X )  +  ( Y  .,  Y ) )  -  ( ( X  .,  Y )  +  ( Y  .,  X ) ) ) )  <_  ( ( abs `  ( ( X 
.,  X )  +  ( Y  .,  Y
) ) )  +  ( abs `  (
( X  .,  Y
)  +  ( Y 
.,  X ) ) ) ) )
8885, 87eqbrtrd 4235 . . . . 5  |-  ( ph  ->  ( ( X  .-  Y )  .,  ( X  .-  Y ) )  <_  ( ( abs `  ( ( X  .,  X )  +  ( Y  .,  Y ) ) )  +  ( abs `  ( ( X  .,  Y )  +  ( Y  .,  X ) ) ) ) )
8918, 20, 43, 49addge0d 9607 . . . . . . 7  |-  ( ph  ->  0  <_  ( ( X  .,  X )  +  ( Y  .,  Y
) ) )
9021, 89absidd 12230 . . . . . 6  |-  ( ph  ->  ( abs `  (
( X  .,  X
)  +  ( Y 
.,  Y ) ) )  =  ( ( X  .,  X )  +  ( Y  .,  Y ) ) )
9190oveq1d 6099 . . . . 5  |-  ( ph  ->  ( ( abs `  (
( X  .,  X
)  +  ( Y 
.,  Y ) ) )  +  ( abs `  ( ( X  .,  Y )  +  ( Y  .,  X ) ) ) )  =  ( ( ( X 
.,  X )  +  ( Y  .,  Y
) )  +  ( abs `  ( ( X  .,  Y )  +  ( Y  .,  X ) ) ) ) )
9288, 91breqtrd 4239 . . . 4  |-  ( ph  ->  ( ( X  .-  Y )  .,  ( X  .-  Y ) )  <_  ( ( ( X  .,  X )  +  ( Y  .,  Y ) )  +  ( abs `  (
( X  .,  Y
)  +  ( Y 
.,  X ) ) ) ) )
9328abscld 12243 . . . . . . . 8  |-  ( ph  ->  ( abs `  ( X  .,  Y ) )  e.  RR )
94 remulcl 9080 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  ( abs `  ( X 
.,  Y ) )  e.  RR )  -> 
( 2  x.  ( abs `  ( X  .,  Y ) ) )  e.  RR )
9536, 93, 94sylancr 646 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( abs `  ( X  .,  Y ) ) )  e.  RR )
9628, 31abstrid 12263 . . . . . . . 8  |-  ( ph  ->  ( abs `  (
( X  .,  Y
)  +  ( Y 
.,  X ) ) )  <_  ( ( abs `  ( X  .,  Y ) )  +  ( abs `  ( Y  .,  X ) ) ) )
9793recnd 9119 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  ( X  .,  Y ) )  e.  CC )
98972timesd 10215 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  ( abs `  ( X  .,  Y ) ) )  =  ( ( abs `  ( X  .,  Y
) )  +  ( abs `  ( X 
.,  Y ) ) ) )
9928abscjd 12257 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  (
* `  ( X  .,  Y ) ) )  =  ( abs `  ( X  .,  Y ) ) )
10012clmcj 19106 . . . . . . . . . . . . . . 15  |-  ( W  e. CMod  ->  *  =  ( * r `  F
) )
10122, 100syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  *  =  ( * r `  F ) )
102101fveq1d 5733 . . . . . . . . . . . . 13  |-  ( ph  ->  ( * `  ( X  .,  Y ) )  =  ( ( * r `  F ) `
 ( X  .,  Y ) ) )
103 eqid 2438 . . . . . . . . . . . . . . 15  |-  ( * r `  F )  =  ( * r `
 F )
10412, 14, 7, 103ipcj 16870 . . . . . . . . . . . . . 14  |-  ( ( W  e.  PreHil  /\  X  e.  V  /\  Y  e.  V )  ->  (
( * r `  F ) `  ( X  .,  Y ) )  =  ( Y  .,  X ) )
1051, 5, 6, 104syl3anc 1185 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( * r `
 F ) `  ( X  .,  Y ) )  =  ( Y 
.,  X ) )
106102, 105eqtrd 2470 . . . . . . . . . . . 12  |-  ( ph  ->  ( * `  ( X  .,  Y ) )  =  ( Y  .,  X ) )
107106fveq2d 5735 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  (
* `  ( X  .,  Y ) ) )  =  ( abs `  ( Y  .,  X ) ) )
10899, 107eqtr3d 2472 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  ( X  .,  Y ) )  =  ( abs `  ( Y  .,  X ) ) )
109108oveq2d 6100 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  ( X  .,  Y ) )  +  ( abs `  ( X  .,  Y ) ) )  =  ( ( abs `  ( X 
.,  Y ) )  +  ( abs `  ( Y  .,  X ) ) ) )
11098, 109eqtrd 2470 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( abs `  ( X  .,  Y ) ) )  =  ( ( abs `  ( X  .,  Y
) )  +  ( abs `  ( Y 
.,  X ) ) ) )
11196, 110breqtrrd 4241 . . . . . . 7  |-  ( ph  ->  ( abs `  (
( X  .,  Y
)  +  ( Y 
.,  X ) ) )  <_  ( 2  x.  ( abs `  ( X  .,  Y ) ) ) )
112 tchcph.3 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  K  /\  x  e.  RR  /\  0  <_  x ) )  -> 
( sqr `  x
)  e.  K )
113 eqid 2438 . . . . . . . . . 10  |-  ( norm `  G )  =  (
norm `  G )
114 eqid 2438 . . . . . . . . . 10  |-  ( ( Y  .,  X )  /  ( Y  .,  Y ) )  =  ( ( Y  .,  X )  /  ( Y  .,  Y ) )
11511, 7, 12, 1, 13, 14, 112, 37, 23, 113, 114, 5, 6ipcau2 19196 . . . . . . . . 9  |-  ( ph  ->  ( abs `  ( X  .,  Y ) )  <_  ( ( (
norm `  G ) `  X )  x.  (
( norm `  G ) `  Y ) ) )
11611, 113, 7, 14tchnmval 19192 . . . . . . . . . . 11  |-  ( ( W  e.  Grp  /\  X  e.  V )  ->  ( ( norm `  G
) `  X )  =  ( sqr `  ( X  .,  X ) ) )
1174, 5, 116syl2anc 644 . . . . . . . . . 10  |-  ( ph  ->  ( ( norm `  G
) `  X )  =  ( sqr `  ( X  .,  X ) ) )
11811, 113, 7, 14tchnmval 19192 . . . . . . . . . . 11  |-  ( ( W  e.  Grp  /\  Y  e.  V )  ->  ( ( norm `  G
) `  Y )  =  ( sqr `  ( Y  .,  Y ) ) )
1194, 6, 118syl2anc 644 . . . . . . . . . 10  |-  ( ph  ->  ( ( norm `  G
) `  Y )  =  ( sqr `  ( Y  .,  Y ) ) )
120117, 119oveq12d 6102 . . . . . . . . 9  |-  ( ph  ->  ( ( ( norm `  G ) `  X
)  x.  ( (
norm `  G ) `  Y ) )  =  ( ( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) )
121115, 120breqtrd 4239 . . . . . . . 8  |-  ( ph  ->  ( abs `  ( X  .,  Y ) )  <_  ( ( sqr `  ( X  .,  X
) )  x.  ( sqr `  ( Y  .,  Y ) ) ) )
12236a1i 11 . . . . . . . . 9  |-  ( ph  ->  2  e.  RR )
123 2pos 10087 . . . . . . . . . 10  |-  0  <  2
124123a1i 11 . . . . . . . . 9  |-  ( ph  ->  0  <  2 )
125 lemul2 9868 . . . . . . . . 9  |-  ( ( ( abs `  ( X  .,  Y ) )  e.  RR  /\  (
( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( ( abs `  ( X  .,  Y ) )  <_ 
( ( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) )  <->  ( 2  x.  ( abs `  ( X  .,  Y ) ) )  <_  ( 2  x.  ( ( sqr `  ( X  .,  X
) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) ) )
12693, 51, 122, 124, 125syl112anc 1189 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  ( X  .,  Y ) )  <_  ( ( sqr `  ( X  .,  X
) )  x.  ( sqr `  ( Y  .,  Y ) ) )  <-> 
( 2  x.  ( abs `  ( X  .,  Y ) ) )  <_  ( 2  x.  ( ( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) ) )
127121, 126mpbid 203 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( abs `  ( X  .,  Y ) ) )  <_  ( 2  x.  ( ( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) )
12833, 95, 53, 111, 127letrd 9232 . . . . . 6  |-  ( ph  ->  ( abs `  (
( X  .,  Y
)  +  ( Y 
.,  X ) ) )  <_  ( 2  x.  ( ( sqr `  ( X  .,  X
) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) )
12933, 53, 21, 128leadd2dd 9646 . . . . 5  |-  ( ph  ->  ( ( ( X 
.,  X )  +  ( Y  .,  Y
) )  +  ( abs `  ( ( X  .,  Y )  +  ( Y  .,  X ) ) ) )  <_  ( (
( X  .,  X
)  +  ( Y 
.,  Y ) )  +  ( 2  x.  ( ( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) ) )
130129, 56breqtrrd 4241 . . . 4  |-  ( ph  ->  ( ( ( X 
.,  X )  +  ( Y  .,  Y
) )  +  ( abs `  ( ( X  .,  Y )  +  ( Y  .,  X ) ) ) )  <_  ( (
( X  .,  X
)  +  ( 2  x.  ( ( sqr `  ( X  .,  X
) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) )  +  ( Y  .,  Y ) ) )
13116, 34, 58, 92, 130letrd 9232 . . 3  |-  ( ph  ->  ( ( X  .-  Y )  .,  ( X  .-  Y ) )  <_  ( ( ( X  .,  X )  +  ( 2  x.  ( ( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) )  +  ( Y  .,  Y
) ) )
13216recnd 9119 . . . 4  |-  ( ph  ->  ( ( X  .-  Y )  .,  ( X  .-  Y ) )  e.  CC )
133132sqsqrd 12246 . . 3  |-  ( ph  ->  ( ( sqr `  (
( X  .-  Y
)  .,  ( X  .-  Y ) ) ) ^ 2 )  =  ( ( X  .-  Y )  .,  ( X  .-  Y ) ) )
13435sqrcld 12244 . . . . 5  |-  ( ph  ->  ( sqr `  ( X  .,  X ) )  e.  CC )
13550recnd 9119 . . . . 5  |-  ( ph  ->  ( sqr `  ( Y  .,  Y ) )  e.  CC )
136 binom2 11501 . . . . 5  |-  ( ( ( sqr `  ( X  .,  X ) )  e.  CC  /\  ( sqr `  ( Y  .,  Y ) )  e.  CC )  ->  (
( ( sqr `  ( X  .,  X ) )  +  ( sqr `  ( Y  .,  Y ) ) ) ^ 2 )  =  ( ( ( ( sqr `  ( X  .,  X ) ) ^ 2 )  +  ( 2  x.  (
( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) )  +  ( ( sqr `  ( Y  .,  Y ) ) ^ 2 ) ) )
137134, 135, 136syl2anc 644 . . . 4  |-  ( ph  ->  ( ( ( sqr `  ( X  .,  X
) )  +  ( sqr `  ( Y 
.,  Y ) ) ) ^ 2 )  =  ( ( ( ( sqr `  ( X  .,  X ) ) ^ 2 )  +  ( 2  x.  (
( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) )  +  ( ( sqr `  ( Y  .,  Y ) ) ^ 2 ) ) )
13835sqsqrd 12246 . . . . . 6  |-  ( ph  ->  ( ( sqr `  ( X  .,  X ) ) ^ 2 )  =  ( X  .,  X
) )
139138oveq1d 6099 . . . . 5  |-  ( ph  ->  ( ( ( sqr `  ( X  .,  X
) ) ^ 2 )  +  ( 2  x.  ( ( sqr `  ( X  .,  X
) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) )  =  ( ( X  .,  X
)  +  ( 2  x.  ( ( sqr `  ( X  .,  X
) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) ) )
14055sqsqrd 12246 . . . . 5  |-  ( ph  ->  ( ( sqr `  ( Y  .,  Y ) ) ^ 2 )  =  ( Y  .,  Y
) )
141139, 140oveq12d 6102 . . . 4  |-  ( ph  ->  ( ( ( ( sqr `  ( X 
.,  X ) ) ^ 2 )  +  ( 2  x.  (
( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) )  +  ( ( sqr `  ( Y  .,  Y ) ) ^ 2 ) )  =  ( ( ( X  .,  X )  +  ( 2  x.  ( ( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) )  +  ( Y  .,  Y
) ) )
142137, 141eqtrd 2470 . . 3  |-  ( ph  ->  ( ( ( sqr `  ( X  .,  X
) )  +  ( sqr `  ( Y 
.,  Y ) ) ) ^ 2 )  =  ( ( ( X  .,  X )  +  ( 2  x.  ( ( sqr `  ( X  .,  X ) )  x.  ( sqr `  ( Y  .,  Y ) ) ) ) )  +  ( Y  .,  Y
) ) )
143131, 133, 1423brtr4d 4245 . 2  |-  ( ph  ->  ( ( sqr `  (
( X  .-  Y
)  .,  ( X  .-  Y ) ) ) ^ 2 )  <_ 
( ( ( sqr `  ( X  .,  X
) )  +  ( sqr `  ( Y 
.,  Y ) ) ) ^ 2 ) )
14416, 63resqrcld 12225 . . 3  |-  ( ph  ->  ( sqr `  (
( X  .-  Y
)  .,  ( X  .-  Y ) ) )  e.  RR )
14544, 50readdcld 9120 . . 3  |-  ( ph  ->  ( ( sqr `  ( X  .,  X ) )  +  ( sqr `  ( Y  .,  Y ) ) )  e.  RR )
14616, 63sqrge0d 12228 . . 3  |-  ( ph  ->  0  <_  ( sqr `  ( ( X  .-  Y )  .,  ( X  .-  Y ) ) ) )
14718, 43sqrge0d 12228 . . . 4  |-  ( ph  ->  0  <_  ( sqr `  ( X  .,  X
) ) )
14820, 49sqrge0d 12228 . . . 4  |-  ( ph  ->  0  <_  ( sqr `  ( Y  .,  Y
) ) )
14944, 50, 147, 148addge0d 9607 . . 3  |-  ( ph  ->  0  <_  ( ( sqr `  ( X  .,  X ) )  +  ( sqr `  ( Y  .,  Y ) ) ) )
150144, 145, 146, 149le2sqd 11563 . 2  |-  ( ph  ->  ( ( sqr `  (
( X  .-  Y
)  .,  ( X  .-  Y ) ) )  <_  ( ( sqr `  ( X  .,  X
) )  +  ( sqr `  ( Y 
.,  Y ) ) )  <->  ( ( sqr `  ( ( X  .-  Y )  .,  ( X  .-  Y ) ) ) ^ 2 )  <_  ( ( ( sqr `  ( X 
.,  X ) )  +  ( sqr `  ( Y  .,  Y ) ) ) ^ 2 ) ) )
151143, 150mpbird 225 1  |-  ( ph  ->  ( sqr `  (
( X  .-  Y
)  .,  ( X  .-  Y ) ) )  <_  ( ( sqr `  ( X  .,  X
) )  +  ( sqr `  ( Y 
.,  Y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707    C_ wss 3322   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   CCcc 8993   RRcr 8994   0cc0 8995    + caddc 8998    x. cmul 9000    < clt 9125    <_ cle 9126    - cmin 9296    / cdiv 9682   2c2 10054   ^cexp 11387   *ccj 11906   sqrcsqr 12043   abscabs 12044   Basecbs 13474   ↾s cress 13475   +g cplusg 13534   * rcstv 13536  Scalarcsca 13537   .icip 13539   Grpcgrp 14690   -gcsg 14693   LModclmod 15955  ℂfldccnfld 16708   PreHilcphl 16860   normcnm 18629  CModcclm 19092  toCHilctch 19135
This theorem is referenced by:  tchcph  19199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074  ax-mulf 9075
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-tpos 6482  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-rp 10618  df-fz 11049  df-seq 11329  df-exp 11388  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-starv 13549  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-unif 13557  df-0g 13732  df-mnd 14695  df-mhm 14743  df-grp 14817  df-minusg 14818  df-sbg 14819  df-subg 14946  df-ghm 15009  df-cmn 15419  df-abl 15420  df-mgp 15654  df-rng 15668  df-cring 15669  df-ur 15670  df-oppr 15733  df-dvdsr 15751  df-unit 15752  df-invr 15782  df-dvr 15793  df-rnghom 15824  df-drng 15842  df-subrg 15871  df-staf 15938  df-srng 15939  df-lmod 15957  df-lmhm 16103  df-lvec 16180  df-sra 16249  df-rgmod 16250  df-cnfld 16709  df-phl 16862  df-nm 18635  df-tng 18637  df-clm 19093  df-tch 19137
  Copyright terms: Public domain W3C validator