MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tchnmval Unicode version

Theorem tchnmval 19144
Description: The norm of a pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tchval.n  |-  G  =  (toCHil `  W )
tchnmval.n  |-  N  =  ( norm `  G
)
tchnmval.v  |-  V  =  ( Base `  W
)
tchnmval.h  |-  .,  =  ( .i `  W )
Assertion
Ref Expression
tchnmval  |-  ( ( W  e.  Grp  /\  X  e.  V )  ->  ( N `  X
)  =  ( sqr `  ( X  .,  X
) ) )

Proof of Theorem tchnmval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 tchval.n . . . 4  |-  G  =  (toCHil `  W )
2 tchnmval.n . . . 4  |-  N  =  ( norm `  G
)
3 tchnmval.v . . . 4  |-  V  =  ( Base `  W
)
4 tchnmval.h . . . 4  |-  .,  =  ( .i `  W )
51, 2, 3, 4tchnmfval 19143 . . 3  |-  ( W  e.  Grp  ->  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) )
65fveq1d 5693 . 2  |-  ( W  e.  Grp  ->  ( N `  X )  =  ( ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) ) `  X ) )
7 oveq12 6053 . . . . 5  |-  ( ( x  =  X  /\  x  =  X )  ->  ( x  .,  x
)  =  ( X 
.,  X ) )
87anidms 627 . . . 4  |-  ( x  =  X  ->  (
x  .,  x )  =  ( X  .,  X ) )
98fveq2d 5695 . . 3  |-  ( x  =  X  ->  ( sqr `  ( x  .,  x ) )  =  ( sqr `  ( X  .,  X ) ) )
10 eqid 2408 . . 3  |-  ( x  e.  V  |->  ( sqr `  ( x  .,  x
) ) )  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) )
11 fvex 5705 . . 3  |-  ( sqr `  ( X  .,  X
) )  e.  _V
129, 10, 11fvmpt 5769 . 2  |-  ( X  e.  V  ->  (
( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) `  X
)  =  ( sqr `  ( X  .,  X
) ) )
136, 12sylan9eq 2460 1  |-  ( ( W  e.  Grp  /\  X  e.  V )  ->  ( N `  X
)  =  ( sqr `  ( X  .,  X
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    e. cmpt 4230   ` cfv 5417  (class class class)co 6044   sqrcsqr 11997   Basecbs 13428   .icip 13493   Grpcgrp 14644   normcnm 18581  toCHilctch 19087
This theorem is referenced by:  ipcau2  19148  tchcphlem1  19149  tchcph  19151
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-pre-sup 9028
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-sup 7408  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-nn 9961  df-2 10018  df-3 10019  df-4 10020  df-5 10021  df-6 10022  df-7 10023  df-8 10024  df-9 10025  df-10 10026  df-n0 10182  df-z 10243  df-dec 10343  df-uz 10449  df-rp 10573  df-seq 11283  df-exp 11342  df-cj 11863  df-re 11864  df-im 11865  df-sqr 11999  df-abs 12000  df-ndx 13431  df-slot 13432  df-base 13433  df-sets 13434  df-plusg 13501  df-tset 13507  df-ds 13510  df-0g 13686  df-mnd 14649  df-grp 14771  df-minusg 14772  df-sbg 14773  df-nm 18587  df-tng 18589  df-tch 19089
  Copyright terms: Public domain W3C validator