MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem3 Structured version   Unicode version

Theorem tdeglem3 19982
Description: Additivity of the total degree helper function. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
tdeglem.a  |-  A  =  { m  e.  ( NN0  ^m  I )  |  ( `' m " NN )  e.  Fin }
tdeglem.h  |-  H  =  ( h  e.  A  |->  (fld 
gsumg  h ) )
Assertion
Ref Expression
tdeglem3  |-  ( ( I  e.  V  /\  X  e.  A  /\  Y  e.  A )  ->  ( H `  ( X  o F  +  Y
) )  =  ( ( H `  X
)  +  ( H `
 Y ) ) )
Distinct variable groups:    A, h    h, I, m    h, V   
h, X, m    h, Y, m
Allowed substitution hints:    A( m)    H( h, m)    V( m)

Proof of Theorem tdeglem3
StepHypRef Expression
1 cnfldbas 16707 . . 3  |-  CC  =  ( Base ` fld )
2 cnfld0 16725 . . 3  |-  0  =  ( 0g ` fld )
3 cnfldadd 16708 . . 3  |-  +  =  ( +g  ` fld )
4 cnrng 16723 . . . 4  |-fld  e.  Ring
5 rngcmn 15694 . . . 4  |-  (fld  e.  Ring  ->fld  e. CMnd )
64, 5mp1i 12 . . 3  |-  ( ( I  e.  V  /\  X  e.  A  /\  Y  e.  A )  ->fld  e. CMnd
)
7 simp1 957 . . 3  |-  ( ( I  e.  V  /\  X  e.  A  /\  Y  e.  A )  ->  I  e.  V )
8 tdeglem.a . . . . . 6  |-  A  =  { m  e.  ( NN0  ^m  I )  |  ( `' m " NN )  e.  Fin }
98psrbagf 16432 . . . . 5  |-  ( ( I  e.  V  /\  X  e.  A )  ->  X : I --> NN0 )
10 nn0sscn 10226 . . . . 5  |-  NN0  C_  CC
11 fss 5599 . . . . 5  |-  ( ( X : I --> NN0  /\  NN0  C_  CC )  ->  X : I --> CC )
129, 10, 11sylancl 644 . . . 4  |-  ( ( I  e.  V  /\  X  e.  A )  ->  X : I --> CC )
13123adant3 977 . . 3  |-  ( ( I  e.  V  /\  X  e.  A  /\  Y  e.  A )  ->  X : I --> CC )
148psrbagf 16432 . . . . 5  |-  ( ( I  e.  V  /\  Y  e.  A )  ->  Y : I --> NN0 )
15 fss 5599 . . . . 5  |-  ( ( Y : I --> NN0  /\  NN0  C_  CC )  ->  Y : I --> CC )
1614, 10, 15sylancl 644 . . . 4  |-  ( ( I  e.  V  /\  Y  e.  A )  ->  Y : I --> CC )
17163adant2 976 . . 3  |-  ( ( I  e.  V  /\  X  e.  A  /\  Y  e.  A )  ->  Y : I --> CC )
188psrbagsuppfi 16565 . . . . 5  |-  ( ( X  e.  A  /\  I  e.  V )  ->  ( `' X "
( _V  \  {
0 } ) )  e.  Fin )
1918ancoms 440 . . . 4  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( `' X "
( _V  \  {
0 } ) )  e.  Fin )
20193adant3 977 . . 3  |-  ( ( I  e.  V  /\  X  e.  A  /\  Y  e.  A )  ->  ( `' X "
( _V  \  {
0 } ) )  e.  Fin )
218psrbagsuppfi 16565 . . . . 5  |-  ( ( Y  e.  A  /\  I  e.  V )  ->  ( `' Y "
( _V  \  {
0 } ) )  e.  Fin )
2221ancoms 440 . . . 4  |-  ( ( I  e.  V  /\  Y  e.  A )  ->  ( `' Y "
( _V  \  {
0 } ) )  e.  Fin )
23223adant2 976 . . 3  |-  ( ( I  e.  V  /\  X  e.  A  /\  Y  e.  A )  ->  ( `' Y "
( _V  \  {
0 } ) )  e.  Fin )
241, 2, 3, 6, 7, 13, 17, 20, 23gsumadd 15528 . 2  |-  ( ( I  e.  V  /\  X  e.  A  /\  Y  e.  A )  ->  (fld 
gsumg  ( X  o F  +  Y ) )  =  ( (fld 
gsumg  X )  +  (fld  gsumg  Y ) ) )
258psrbagaddcl 16435 . . 3  |-  ( ( I  e.  V  /\  X  e.  A  /\  Y  e.  A )  ->  ( X  o F  +  Y )  e.  A )
26 oveq2 6089 . . . 4  |-  ( h  =  ( X  o F  +  Y )  ->  (fld 
gsumg  h )  =  (fld  gsumg  ( X  o F  +  Y
) ) )
27 tdeglem.h . . . 4  |-  H  =  ( h  e.  A  |->  (fld 
gsumg  h ) )
28 ovex 6106 . . . 4  |-  (fld  gsumg  ( X  o F  +  Y ) )  e.  _V
2926, 27, 28fvmpt 5806 . . 3  |-  ( ( X  o F  +  Y )  e.  A  ->  ( H `  ( X  o F  +  Y
) )  =  (fld  gsumg  ( X  o F  +  Y
) ) )
3025, 29syl 16 . 2  |-  ( ( I  e.  V  /\  X  e.  A  /\  Y  e.  A )  ->  ( H `  ( X  o F  +  Y
) )  =  (fld  gsumg  ( X  o F  +  Y
) ) )
31 oveq2 6089 . . . . 5  |-  ( h  =  X  ->  (fld  gsumg  h )  =  (fld  gsumg  X ) )
32 ovex 6106 . . . . 5  |-  (fld  gsumg  X )  e.  _V
3331, 27, 32fvmpt 5806 . . . 4  |-  ( X  e.  A  ->  ( H `  X )  =  (fld 
gsumg  X ) )
34 oveq2 6089 . . . . 5  |-  ( h  =  Y  ->  (fld  gsumg  h )  =  (fld  gsumg  Y ) )
35 ovex 6106 . . . . 5  |-  (fld  gsumg  Y )  e.  _V
3634, 27, 35fvmpt 5806 . . . 4  |-  ( Y  e.  A  ->  ( H `  Y )  =  (fld 
gsumg  Y ) )
3733, 36oveqan12d 6100 . . 3  |-  ( ( X  e.  A  /\  Y  e.  A )  ->  ( ( H `  X )  +  ( H `  Y ) )  =  ( (fld  gsumg  X )  +  (fld 
gsumg  Y ) ) )
38373adant1 975 . 2  |-  ( ( I  e.  V  /\  X  e.  A  /\  Y  e.  A )  ->  ( ( H `  X )  +  ( H `  Y ) )  =  ( (fld  gsumg  X )  +  (fld 
gsumg  Y ) ) )
3924, 30, 383eqtr4d 2478 1  |-  ( ( I  e.  V  /\  X  e.  A  /\  Y  e.  A )  ->  ( H `  ( X  o F  +  Y
) )  =  ( ( H `  X
)  +  ( H `
 Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {crab 2709   _Vcvv 2956    \ cdif 3317    C_ wss 3320   {csn 3814    e. cmpt 4266   `'ccnv 4877   "cima 4881   -->wf 5450   ` cfv 5454  (class class class)co 6081    o Fcof 6303    ^m cmap 7018   Fincfn 7109   CCcc 8988   0cc0 8990    + caddc 8993   NNcn 10000   NN0cn0 10221    gsumg cgsu 13724  CMndccmn 15412   Ringcrg 15660  ℂfldccnfld 16703
This theorem is referenced by:  mdegmullem  20001
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-oi 7479  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-fz 11044  df-fzo 11136  df-seq 11324  df-hash 11619  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-0g 13727  df-gsum 13728  df-mnd 14690  df-submnd 14739  df-grp 14812  df-minusg 14813  df-cntz 15116  df-cmn 15414  df-abl 15415  df-mgp 15649  df-rng 15663  df-cring 15664  df-ur 15665  df-cnfld 16704
  Copyright terms: Public domain W3C validator