MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem4 Structured version   Unicode version

Theorem tdeglem4 19985
Description: There is only one multi-index with total degree 0. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
tdeglem.a  |-  A  =  { m  e.  ( NN0  ^m  I )  |  ( `' m " NN )  e.  Fin }
tdeglem.h  |-  H  =  ( h  e.  A  |->  (fld 
gsumg  h ) )
Assertion
Ref Expression
tdeglem4  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( ( H `  X )  =  0  <-> 
X  =  ( I  X.  { 0 } ) ) )
Distinct variable groups:    A, h    h, I, m    h, V   
h, X, m
Allowed substitution hints:    A( m)    H( h, m)    V( m)

Proof of Theorem tdeglem4
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexnal 2718 . . . . 5  |-  ( E. x  e.  I  -.  ( X `  x )  =  0  <->  -.  A. x  e.  I  ( X `  x )  =  0 )
2 df-ne 2603 . . . . . . 7  |-  ( ( X `  x )  =/=  0  <->  -.  ( X `  x )  =  0 )
3 oveq2 6091 . . . . . . . . . . . 12  |-  ( h  =  X  ->  (fld  gsumg  h )  =  (fld  gsumg  X ) )
4 tdeglem.h . . . . . . . . . . . 12  |-  H  =  ( h  e.  A  |->  (fld 
gsumg  h ) )
5 ovex 6108 . . . . . . . . . . . 12  |-  (fld  gsumg  X )  e.  _V
63, 4, 5fvmpt 5808 . . . . . . . . . . 11  |-  ( X  e.  A  ->  ( H `  X )  =  (fld 
gsumg  X ) )
76ad2antlr 709 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( H `  X
)  =  (fld  gsumg  X ) )
8 tdeglem.a . . . . . . . . . . . . . 14  |-  A  =  { m  e.  ( NN0  ^m  I )  |  ( `' m " NN )  e.  Fin }
98psrbagf 16434 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  X  e.  A )  ->  X : I --> NN0 )
109feqmptd 5781 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  X  e.  A )  ->  X  =  ( y  e.  I  |->  ( X `
 y ) ) )
1110adantr 453 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  X  =  ( y  e.  I  |->  ( X `
 y ) ) )
1211oveq2d 6099 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
(fld  gsumg  X )  =  (fld  gsumg  ( y  e.  I  |->  ( X `  y
) ) ) )
13 cnfldbas 16709 . . . . . . . . . . 11  |-  CC  =  ( Base ` fld )
14 cnfld0 16727 . . . . . . . . . . 11  |-  0  =  ( 0g ` fld )
15 cnfldadd 16710 . . . . . . . . . . 11  |-  +  =  ( +g  ` fld )
16 cnrng 16725 . . . . . . . . . . . 12  |-fld  e.  Ring
17 rngcmn 15696 . . . . . . . . . . . 12  |-  (fld  e.  Ring  ->fld  e. CMnd )
1816, 17mp1i 12 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->fld  e. CMnd )
19 simpll 732 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  I  e.  V )
209adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  X : I --> NN0 )
2120ffvelrnda 5872 . . . . . . . . . . . 12  |-  ( ( ( ( I  e.  V  /\  X  e.  A )  /\  (
x  e.  I  /\  ( X `  x )  =/=  0 ) )  /\  y  e.  I
)  ->  ( X `  y )  e.  NN0 )
2221nn0cnd 10278 . . . . . . . . . . 11  |-  ( ( ( ( I  e.  V  /\  X  e.  A )  /\  (
x  e.  I  /\  ( X `  x )  =/=  0 ) )  /\  y  e.  I
)  ->  ( X `  y )  e.  CC )
2311cnveqd 5050 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  `' X  =  `' ( y  e.  I  |->  ( X `  y
) ) )
2423imaeq1d 5204 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( `' X "
( _V  \  {
0 } ) )  =  ( `' ( y  e.  I  |->  ( X `  y ) ) " ( _V 
\  { 0 } ) ) )
258psrbagsuppfi 16567 . . . . . . . . . . . . . 14  |-  ( ( X  e.  A  /\  I  e.  V )  ->  ( `' X "
( _V  \  {
0 } ) )  e.  Fin )
2625ancoms 441 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( `' X "
( _V  \  {
0 } ) )  e.  Fin )
2726adantr 453 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( `' X "
( _V  \  {
0 } ) )  e.  Fin )
2824, 27eqeltrrd 2513 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( `' ( y  e.  I  |->  ( X `
 y ) )
" ( _V  \  { 0 } ) )  e.  Fin )
29 incom 3535 . . . . . . . . . . . . 13  |-  ( ( I  \  { x } )  i^i  {
x } )  =  ( { x }  i^i  ( I  \  {
x } ) )
30 disjdif 3702 . . . . . . . . . . . . 13  |-  ( { x }  i^i  (
I  \  { x } ) )  =  (/)
3129, 30eqtri 2458 . . . . . . . . . . . 12  |-  ( ( I  \  { x } )  i^i  {
x } )  =  (/)
3231a1i 11 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( ( I  \  { x } )  i^i  { x }
)  =  (/) )
33 difsnid 3946 . . . . . . . . . . . . 13  |-  ( x  e.  I  ->  (
( I  \  {
x } )  u. 
{ x } )  =  I )
3433eqcomd 2443 . . . . . . . . . . . 12  |-  ( x  e.  I  ->  I  =  ( ( I 
\  { x }
)  u.  { x } ) )
3534ad2antrl 710 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  I  =  ( (
I  \  { x } )  u.  {
x } ) )
3613, 14, 15, 18, 19, 22, 28, 32, 35gsumsplit2 15533 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
(fld  gsumg  ( y  e.  I  |->  ( X `  y ) ) )  =  ( (fld 
gsumg  ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) )  +  (fld  gsumg  ( y  e.  {
x }  |->  ( X `
 y ) ) ) ) )
377, 12, 363eqtrd 2474 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( H `  X
)  =  ( (fld  gsumg  ( y  e.  ( I  \  { x } ) 
|->  ( X `  y
) ) )  +  (fld 
gsumg  ( y  e.  {
x }  |->  ( X `
 y ) ) ) ) )
38 difexg 4353 . . . . . . . . . . . . 13  |-  ( I  e.  V  ->  (
I  \  { x } )  e.  _V )
3919, 38syl 16 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( I  \  {
x } )  e. 
_V )
40 nn0subm 16756 . . . . . . . . . . . . 13  |-  NN0  e.  (SubMnd ` fld )
4140a1i 11 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  NN0  e.  (SubMnd ` fld ) )
42 eldifi 3471 . . . . . . . . . . . . . 14  |-  ( y  e.  ( I  \  { x } )  ->  y  e.  I
)
43 ffvelrn 5870 . . . . . . . . . . . . . 14  |-  ( ( X : I --> NN0  /\  y  e.  I )  ->  ( X `  y
)  e.  NN0 )
4420, 42, 43syl2an 465 . . . . . . . . . . . . 13  |-  ( ( ( ( I  e.  V  /\  X  e.  A )  /\  (
x  e.  I  /\  ( X `  x )  =/=  0 ) )  /\  y  e.  ( I  \  { x } ) )  -> 
( X `  y
)  e.  NN0 )
45 eqid 2438 . . . . . . . . . . . . 13  |-  ( y  e.  ( I  \  { x } ) 
|->  ( X `  y
) )  =  ( y  e.  ( I 
\  { x }
)  |->  ( X `  y ) )
4644, 45fmptd 5895 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) : ( I  \  { x } ) --> NN0 )
47 difss 3476 . . . . . . . . . . . . . . . 16  |-  ( I 
\  { x }
)  C_  I
48 resmpt 5193 . . . . . . . . . . . . . . . 16  |-  ( ( I  \  { x } )  C_  I  ->  ( ( y  e.  I  |->  ( X `  y ) )  |`  ( I  \  { x } ) )  =  ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) )
4947, 48ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  I  |->  ( X `  y ) )  |`  ( I  \  { x } ) )  =  ( y  e.  ( I  \  { x } ) 
|->  ( X `  y
) )
50 resss 5172 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  I  |->  ( X `  y ) )  |`  ( I  \  { x } ) )  C_  ( y  e.  I  |->  ( X `
 y ) )
5149, 50eqsstr3i 3381 . . . . . . . . . . . . . 14  |-  ( y  e.  ( I  \  { x } ) 
|->  ( X `  y
) )  C_  (
y  e.  I  |->  ( X `  y ) )
52 cnvss 5047 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ( I 
\  { x }
)  |->  ( X `  y ) )  C_  ( y  e.  I  |->  ( X `  y
) )  ->  `' ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) 
C_  `' ( y  e.  I  |->  ( X `
 y ) ) )
53 imass1 5241 . . . . . . . . . . . . . 14  |-  ( `' ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) 
C_  `' ( y  e.  I  |->  ( X `
 y ) )  ->  ( `' ( y  e.  ( I 
\  { x }
)  |->  ( X `  y ) ) "
( _V  \  {
0 } ) ) 
C_  ( `' ( y  e.  I  |->  ( X `  y ) ) " ( _V 
\  { 0 } ) ) )
5451, 52, 53mp2b 10 . . . . . . . . . . . . 13  |-  ( `' ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) )
" ( _V  \  { 0 } ) )  C_  ( `' ( y  e.  I  |->  ( X `  y
) ) " ( _V  \  { 0 } ) )
55 ssfi 7331 . . . . . . . . . . . . 13  |-  ( ( ( `' ( y  e.  I  |->  ( X `
 y ) )
" ( _V  \  { 0 } ) )  e.  Fin  /\  ( `' ( y  e.  ( I  \  {
x } )  |->  ( X `  y ) ) " ( _V 
\  { 0 } ) )  C_  ( `' ( y  e.  I  |->  ( X `  y ) ) "
( _V  \  {
0 } ) ) )  ->  ( `' ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) )
" ( _V  \  { 0 } ) )  e.  Fin )
5628, 54, 55sylancl 645 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( `' ( y  e.  ( I  \  { x } ) 
|->  ( X `  y
) ) " ( _V  \  { 0 } ) )  e.  Fin )
5714, 18, 39, 41, 46, 56gsumsubmcl 15526 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
(fld  gsumg  ( y  e.  ( I 
\  { x }
)  |->  ( X `  y ) ) )  e.  NN0 )
58 rngmnd 15675 . . . . . . . . . . . . . 14  |-  (fld  e.  Ring  ->fld  e.  Mnd )
5916, 58mp1i 12 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->fld  e.  Mnd )
60 simprl 734 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  x  e.  I )
6120, 60ffvelrnd 5873 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( X `  x
)  e.  NN0 )
6261nn0cnd 10278 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( X `  x
)  e.  CC )
63 fveq2 5730 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  ( X `  y )  =  ( X `  x ) )
6413, 63gsumsn 15545 . . . . . . . . . . . . 13  |-  ( (fld  e. 
Mnd  /\  x  e.  I  /\  ( X `  x )  e.  CC )  ->  (fld 
gsumg  ( y  e.  {
x }  |->  ( X `
 y ) ) )  =  ( X `
 x ) )
6559, 60, 62, 64syl3anc 1185 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
(fld  gsumg  ( y  e.  { x }  |->  ( X `  y ) ) )  =  ( X `  x ) )
66 simprr 735 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( X `  x
)  =/=  0 )
6766, 2sylib 190 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  ->  -.  ( X `  x
)  =  0 )
68 elnn0 10225 . . . . . . . . . . . . . 14  |-  ( ( X `  x )  e.  NN0  <->  ( ( X `
 x )  e.  NN  \/  ( X `
 x )  =  0 ) )
6961, 68sylib 190 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( ( X `  x )  e.  NN  \/  ( X `  x
)  =  0 ) )
70 orel2 374 . . . . . . . . . . . . 13  |-  ( -.  ( X `  x
)  =  0  -> 
( ( ( X `
 x )  e.  NN  \/  ( X `
 x )  =  0 )  ->  ( X `  x )  e.  NN ) )
7167, 69, 70sylc 59 . . . . . . . . . . . 12  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( X `  x
)  e.  NN )
7265, 71eqeltrd 2512 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
(fld  gsumg  ( y  e.  { x }  |->  ( X `  y ) ) )  e.  NN )
73 nn0nnaddcl 10254 . . . . . . . . . . 11  |-  ( ( (fld 
gsumg  ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) )  e.  NN0  /\  (fld  gsumg  (
y  e.  { x }  |->  ( X `  y ) ) )  e.  NN )  -> 
( (fld 
gsumg  ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) )  +  (fld  gsumg  ( y  e.  {
x }  |->  ( X `
 y ) ) ) )  e.  NN )
7457, 72, 73syl2anc 644 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( (fld 
gsumg  ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) )  +  (fld  gsumg  ( y  e.  {
x }  |->  ( X `
 y ) ) ) )  e.  NN )
7574nnne0d 10046 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( (fld 
gsumg  ( y  e.  ( I  \  { x } )  |->  ( X `
 y ) ) )  +  (fld  gsumg  ( y  e.  {
x }  |->  ( X `
 y ) ) ) )  =/=  0
)
7637, 75eqnetrd 2621 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  ( x  e.  I  /\  ( X `  x )  =/=  0 ) )  -> 
( H `  X
)  =/=  0 )
7776expr 600 . . . . . . 7  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  x  e.  I )  ->  (
( X `  x
)  =/=  0  -> 
( H `  X
)  =/=  0 ) )
782, 77syl5bir 211 . . . . . 6  |-  ( ( ( I  e.  V  /\  X  e.  A
)  /\  x  e.  I )  ->  ( -.  ( X `  x
)  =  0  -> 
( H `  X
)  =/=  0 ) )
7978rexlimdva 2832 . . . . 5  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( E. x  e.  I  -.  ( X `
 x )  =  0  ->  ( H `  X )  =/=  0
) )
801, 79syl5bir 211 . . . 4  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( -.  A. x  e.  I  ( X `  x )  =  0  ->  ( H `  X )  =/=  0
) )
8180necon4bd 2668 . . 3  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( ( H `  X )  =  0  ->  A. x  e.  I 
( X `  x
)  =  0 ) )
82 ffn 5593 . . . . . 6  |-  ( X : I --> NN0  ->  X  Fn  I )
839, 82syl 16 . . . . 5  |-  ( ( I  e.  V  /\  X  e.  A )  ->  X  Fn  I )
84 0nn0 10238 . . . . . 6  |-  0  e.  NN0
85 fnconstg 5633 . . . . . 6  |-  ( 0  e.  NN0  ->  ( I  X.  { 0 } )  Fn  I )
8684, 85mp1i 12 . . . . 5  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( I  X.  {
0 } )  Fn  I )
87 eqfnfv 5829 . . . . 5  |-  ( ( X  Fn  I  /\  ( I  X.  { 0 } )  Fn  I
)  ->  ( X  =  ( I  X.  { 0 } )  <->  A. x  e.  I 
( X `  x
)  =  ( ( I  X.  { 0 } ) `  x
) ) )
8883, 86, 87syl2anc 644 . . . 4  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( X  =  ( I  X.  { 0 } )  <->  A. x  e.  I  ( X `  x )  =  ( ( I  X.  {
0 } ) `  x ) ) )
89 c0ex 9087 . . . . . . 7  |-  0  e.  _V
9089fvconst2 5949 . . . . . 6  |-  ( x  e.  I  ->  (
( I  X.  {
0 } ) `  x )  =  0 )
9190eqeq2d 2449 . . . . 5  |-  ( x  e.  I  ->  (
( X `  x
)  =  ( ( I  X.  { 0 } ) `  x
)  <->  ( X `  x )  =  0 ) )
9291ralbiia 2739 . . . 4  |-  ( A. x  e.  I  ( X `  x )  =  ( ( I  X.  { 0 } ) `  x )  <->  A. x  e.  I 
( X `  x
)  =  0 )
9388, 92syl6bb 254 . . 3  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( X  =  ( I  X.  { 0 } )  <->  A. x  e.  I  ( X `  x )  =  0 ) )
9481, 93sylibrd 227 . 2  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( ( H `  X )  =  0  ->  X  =  ( I  X.  { 0 } ) ) )
958psrbag0 16556 . . . . . 6  |-  ( I  e.  V  ->  (
I  X.  { 0 } )  e.  A
)
9695adantr 453 . . . . 5  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( I  X.  {
0 } )  e.  A )
97 oveq2 6091 . . . . . 6  |-  ( h  =  ( I  X.  { 0 } )  ->  (fld 
gsumg  h )  =  (fld  gsumg  ( I  X.  { 0 } ) ) )
98 ovex 6108 . . . . . 6  |-  (fld  gsumg  ( I  X.  {
0 } ) )  e.  _V
9997, 4, 98fvmpt 5808 . . . . 5  |-  ( ( I  X.  { 0 } )  e.  A  ->  ( H `  (
I  X.  { 0 } ) )  =  (fld 
gsumg  ( I  X.  { 0 } ) ) )
10096, 99syl 16 . . . 4  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( H `  (
I  X.  { 0 } ) )  =  (fld 
gsumg  ( I  X.  { 0 } ) ) )
101 fconstmpt 4923 . . . . . 6  |-  ( I  X.  { 0 } )  =  ( x  e.  I  |->  0 )
102101oveq2i 6094 . . . . 5  |-  (fld  gsumg  ( I  X.  {
0 } ) )  =  (fld 
gsumg  ( x  e.  I  |->  0 ) )
10316, 58ax-mp 8 . . . . . . 7  |-fld  e.  Mnd
10414gsumz 14783 . . . . . . 7  |-  ( (fld  e. 
Mnd  /\  I  e.  V )  ->  (fld  gsumg  ( x  e.  I  |->  0 ) )  =  0 )
105103, 104mpan 653 . . . . . 6  |-  ( I  e.  V  ->  (fld  gsumg  ( x  e.  I  |->  0 ) )  =  0 )
106105adantr 453 . . . . 5  |-  ( ( I  e.  V  /\  X  e.  A )  ->  (fld 
gsumg  ( x  e.  I  |->  0 ) )  =  0 )
107102, 106syl5eq 2482 . . . 4  |-  ( ( I  e.  V  /\  X  e.  A )  ->  (fld 
gsumg  ( I  X.  { 0 } ) )  =  0 )
108100, 107eqtrd 2470 . . 3  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( H `  (
I  X.  { 0 } ) )  =  0 )
109 fveq2 5730 . . . 4  |-  ( X  =  ( I  X.  { 0 } )  ->  ( H `  X )  =  ( H `  ( I  X.  { 0 } ) ) )
110109eqeq1d 2446 . . 3  |-  ( X  =  ( I  X.  { 0 } )  ->  ( ( H `
 X )  =  0  <->  ( H `  ( I  X.  { 0 } ) )  =  0 ) )
111108, 110syl5ibrcom 215 . 2  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( X  =  ( I  X.  { 0 } )  ->  ( H `  X )  =  0 ) )
11294, 111impbid 185 1  |-  ( ( I  e.  V  /\  X  e.  A )  ->  ( ( H `  X )  =  0  <-> 
X  =  ( I  X.  { 0 } ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   {crab 2711   _Vcvv 2958    \ cdif 3319    u. cun 3320    i^i cin 3321    C_ wss 3322   (/)c0 3630   {csn 3816    e. cmpt 4268    X. cxp 4878   `'ccnv 4879    |` cres 4882   "cima 4883    Fn wfn 5451   -->wf 5452   ` cfv 5456  (class class class)co 6083    ^m cmap 7020   Fincfn 7111   CCcc 8990   0cc0 8992    + caddc 8995   NNcn 10002   NN0cn0 10223    gsumg cgsu 13726   Mndcmnd 14686  SubMndcsubmnd 14739  CMndccmn 15414   Ringcrg 15662  ℂfldccnfld 16705
This theorem is referenced by:  mdegle0  20002
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-map 7022  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-oi 7481  df-card 7828  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-fz 11046  df-fzo 11138  df-seq 11326  df-hash 11621  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-0g 13729  df-gsum 13730  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-submnd 14741  df-grp 14814  df-minusg 14815  df-mulg 14817  df-cntz 15118  df-cmn 15416  df-abl 15417  df-mgp 15651  df-rng 15665  df-cring 15666  df-ur 15667  df-cnfld 16706
  Copyright terms: Public domain W3C validator