Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0mul Structured version   Unicode version

Theorem tendo0mul 31560
Description: Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 1-Aug-2013.)
Hypotheses
Ref Expression
tendoid0.b  |-  B  =  ( Base `  K
)
tendoid0.h  |-  H  =  ( LHyp `  K
)
tendoid0.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendoid0.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendoid0.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
tendo0mul  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( O  o.  U )  =  O )
Distinct variable groups:    B, f    T, f
Allowed substitution hints:    U( f)    E( f)    H( f)    K( f)    O( f)    W( f)

Proof of Theorem tendo0mul
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 tendoid0.b . . . 4  |-  B  =  ( Base `  K
)
2 tendoid0.h . . . 4  |-  H  =  ( LHyp `  K
)
3 tendoid0.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
41, 2, 3cdlemftr0 31302 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. g  e.  T  g  =/=  (  _I  |`  B ) )
54adantr 452 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  E. g  e.  T  g  =/=  (  _I  |`  B ) )
6 simpll 731 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 tendoid0.e . . . . . 6  |-  E  =  ( ( TEndo `  K
) `  W )
8 tendoid0.o . . . . . 6  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
91, 2, 3, 7, 8tendo0cl 31524 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
109ad2antrr 707 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  O  e.  E )
11 simplr 732 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  U  e.  E )
122, 7tendococl 31506 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  O  e.  E  /\  U  e.  E
)  ->  ( O  o.  U )  e.  E
)
136, 10, 11, 12syl3anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( O  o.  U )  e.  E )
14 simprl 733 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  g  e.  T )
152, 3, 7tendocl 31501 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  g  e.  T
)  ->  ( U `  g )  e.  T
)
166, 11, 14, 15syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( U `  g )  e.  T )
178, 1tendo02 31521 . . . . 5  |-  ( ( U `  g )  e.  T  ->  ( O `  ( U `  g ) )  =  (  _I  |`  B ) )
1816, 17syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( O `  ( U `  g ) )  =  (  _I  |`  B ) )
192, 3, 7tendocoval 31500 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( O  e.  E  /\  U  e.  E )  /\  g  e.  T )  ->  (
( O  o.  U
) `  g )  =  ( O `  ( U `  g ) ) )
206, 10, 11, 14, 19syl121anc 1189 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  (
( O  o.  U
) `  g )  =  ( O `  ( U `  g ) ) )
218, 1tendo02 31521 . . . . 5  |-  ( g  e.  T  ->  ( O `  g )  =  (  _I  |`  B ) )
2221ad2antrl 709 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( O `  g )  =  (  _I  |`  B ) )
2318, 20, 223eqtr4d 2477 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  (
( O  o.  U
) `  g )  =  ( O `  g ) )
24 simpr 448 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )
251, 2, 3, 7tendocan 31558 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( O  o.  U )  e.  E  /\  O  e.  E  /\  ( ( O  o.  U ) `
 g )  =  ( O `  g
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( O  o.  U )  =  O )
266, 13, 10, 23, 24, 25syl131anc 1197 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( O  o.  U )  =  O )
275, 26rexlimddv 2826 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( O  o.  U )  =  O )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698    e. cmpt 4258    _I cid 4485    |` cres 4872    o. ccom 4874   ` cfv 5446   Basecbs 13461   HLchlt 30085   LHypclh 30718   LTrncltrn 30835   TEndoctendo 31486
This theorem is referenced by:  cdleml5N  31714  cdleml9  31718
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-fal 1329  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-map 7012  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-p1 14461  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-llines 30232  df-lplanes 30233  df-lvols 30234  df-lines 30235  df-psubsp 30237  df-pmap 30238  df-padd 30530  df-lhyp 30722  df-laut 30723  df-ldil 30838  df-ltrn 30839  df-trl 30893  df-tendo 31489
  Copyright terms: Public domain W3C validator