Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0mulr Unicode version

Theorem tendo0mulr 31313
Description: Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 13-Feb-2014.)
Hypotheses
Ref Expression
tendoid0.b  |-  B  =  ( Base `  K
)
tendoid0.h  |-  H  =  ( LHyp `  K
)
tendoid0.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendoid0.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendoid0.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
tendo0mulr  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( U  o.  O )  =  O )
Distinct variable groups:    B, f    T, f
Allowed substitution hints:    U( f)    E( f)    H( f)    K( f)    O( f)    W( f)

Proof of Theorem tendo0mulr
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 tendoid0.b . . . 4  |-  B  =  ( Base `  K
)
2 tendoid0.h . . . 4  |-  H  =  ( LHyp `  K
)
3 tendoid0.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
41, 2, 3cdlemftr0 31054 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. g  e.  T  g  =/=  (  _I  |`  B ) )
54adantr 452 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  E. g  e.  T  g  =/=  (  _I  |`  B ) )
6 simpll 731 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 simplr 732 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  U  e.  E )
8 tendoid0.e . . . . . 6  |-  E  =  ( ( TEndo `  K
) `  W )
9 tendoid0.o . . . . . 6  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
101, 2, 3, 8, 9tendo0cl 31276 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
1110ad2antrr 707 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  O  e.  E )
122, 8tendococl 31258 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  O  e.  E
)  ->  ( U  o.  O )  e.  E
)
136, 7, 11, 12syl3anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( U  o.  O )  e.  E )
149, 1tendo02 31273 . . . . . . 7  |-  ( g  e.  T  ->  ( O `  g )  =  (  _I  |`  B ) )
1514ad2antrl 709 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( O `  g )  =  (  _I  |`  B ) )
1615fveq2d 5695 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( U `  ( O `  g ) )  =  ( U `  (  _I  |`  B ) ) )
171, 2, 8tendoid 31259 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( U `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
1817adantr 452 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( U `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
1916, 18eqtrd 2440 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( U `  ( O `  g ) )  =  (  _I  |`  B ) )
20 simprl 733 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  g  e.  T )
212, 3, 8tendocoval 31252 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  O  e.  E )  /\  g  e.  T )  ->  (
( U  o.  O
) `  g )  =  ( U `  ( O `  g ) ) )
226, 7, 11, 20, 21syl121anc 1189 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  (
( U  o.  O
) `  g )  =  ( U `  ( O `  g ) ) )
2319, 22, 153eqtr4d 2450 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  (
( U  o.  O
) `  g )  =  ( O `  g ) )
24 simpr 448 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )
251, 2, 3, 8tendocan 31310 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( U  o.  O )  e.  E  /\  O  e.  E  /\  ( ( U  o.  O ) `
 g )  =  ( O `  g
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( U  o.  O )  =  O )
266, 13, 11, 23, 24, 25syl131anc 1197 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( U  o.  O )  =  O )
275, 26rexlimddv 2798 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( U  o.  O )  =  O )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2571   E.wrex 2671    e. cmpt 4230    _I cid 4457    |` cres 4843    o. ccom 4845   ` cfv 5417   Basecbs 13428   HLchlt 29837   LHypclh 30470   LTrncltrn 30587   TEndoctendo 31238
This theorem is referenced by:  dib1dim2  31655  diblss  31657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-undef 6506  df-riota 6512  df-map 6983  df-poset 14362  df-plt 14374  df-lub 14390  df-glb 14391  df-join 14392  df-meet 14393  df-p0 14427  df-p1 14428  df-lat 14434  df-clat 14496  df-oposet 29663  df-ol 29665  df-oml 29666  df-covers 29753  df-ats 29754  df-atl 29785  df-cvlat 29809  df-hlat 29838  df-llines 29984  df-lplanes 29985  df-lvols 29986  df-lines 29987  df-psubsp 29989  df-pmap 29990  df-padd 30282  df-lhyp 30474  df-laut 30475  df-ldil 30590  df-ltrn 30591  df-trl 30645  df-tendo 31241
  Copyright terms: Public domain W3C validator