Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0plr Structured version   Unicode version

Theorem tendo0plr 31589
Description: Property of the additive identity endormorphism. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
tendo0.b  |-  B  =  ( Base `  K
)
tendo0.h  |-  H  =  ( LHyp `  K
)
tendo0.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendo0.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendo0.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
tendo0pl.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
Assertion
Ref Expression
tendo0plr  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( S P O )  =  S )
Distinct variable groups:    B, f    T, f    t, s, E    T, s, t, f    f, W, s, t
Allowed substitution hints:    B( t, s)    P( t, f, s)    S( t, f, s)    E( f)    H( t, f, s)    K( t, f, s)    O( t, f, s)

Proof of Theorem tendo0plr
StepHypRef Expression
1 tendo0.b . . . . 5  |-  B  =  ( Base `  K
)
2 tendo0.h . . . . 5  |-  H  =  ( LHyp `  K
)
3 tendo0.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
4 tendo0.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
5 tendo0.o . . . . 5  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
61, 2, 3, 4, 5tendo0cl 31587 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
76adantr 452 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  O  e.  E )
8 tendo0pl.p . . . 4  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
92, 3, 4, 8tendoplcom 31579 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  O  e.  E
)  ->  ( S P O )  =  ( O P S ) )
107, 9mpd3an3 1280 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( S P O )  =  ( O P S ) )
111, 2, 3, 4, 5, 8tendo0pl 31588 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( O P S )  =  S )
1210, 11eqtrd 2468 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( S P O )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    e. cmpt 4266    _I cid 4493    |` cres 4880    o. ccom 4882   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083   Basecbs 13469   HLchlt 30148   LHypclh 30781   LTrncltrn 30898   TEndoctendo 31549
This theorem is referenced by:  cdlemn6  32000  dihopelvalcpre  32046
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-map 7020  df-poset 14403  df-plt 14415  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-p0 14468  df-p1 14469  df-lat 14475  df-clat 14537  df-oposet 29974  df-ol 29976  df-oml 29977  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149  df-llines 30295  df-lplanes 30296  df-lvols 30297  df-lines 30298  df-psubsp 30300  df-pmap 30301  df-padd 30593  df-lhyp 30785  df-laut 30786  df-ldil 30901  df-ltrn 30902  df-trl 30956  df-tendo 31552
  Copyright terms: Public domain W3C validator