Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoconid Structured version   Unicode version

Theorem tendoconid 31563
Description: The composition (product) of trace-preserving endormorphisms is nonzero when each argument is nonzero. (Contributed by NM, 8-Aug-2013.)
Hypotheses
Ref Expression
tendoid0.b  |-  B  =  ( Base `  K
)
tendoid0.h  |-  H  =  ( LHyp `  K
)
tendoid0.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendoid0.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendoid0.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
tendoconid  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/= 
O )  /\  ( V  e.  E  /\  V  =/=  O ) )  ->  ( U  o.  V )  =/=  O
)
Distinct variable groups:    B, f    T, f
Allowed substitution hints:    U( f)    E( f)    H( f)    K( f)    O( f)    V( f)    W( f)

Proof of Theorem tendoconid
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 tendoid0.b . . . 4  |-  B  =  ( Base `  K
)
2 tendoid0.h . . . 4  |-  H  =  ( LHyp `  K
)
3 tendoid0.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
41, 2, 3cdlemftr0 31302 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. g  e.  T  g  =/=  (  _I  |`  B ) )
543ad2ant1 978 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/= 
O )  /\  ( V  e.  E  /\  V  =/=  O ) )  ->  E. g  e.  T  g  =/=  (  _I  |`  B ) )
6 simpl1 960 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 simpl3l 1012 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  V  e.  E )
8 tendoid0.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
92, 3, 8tendof 31497 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E
)  ->  V : T
--> T )
106, 7, 9syl2anc 643 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  V : T --> T )
11 simprl 733 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  g  e.  T )
12 fvco3 5792 . . . . 5  |-  ( ( V : T --> T  /\  g  e.  T )  ->  ( ( U  o.  V ) `  g
)  =  ( U `
 ( V `  g ) ) )
1310, 11, 12syl2anc 643 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  (
( U  o.  V
) `  g )  =  ( U `  ( V `  g ) ) )
14 simpl2r 1011 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  U  =/=  O )
15 simpl2l 1010 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  U  e.  E )
162, 3, 8tendocl 31501 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  g  e.  T
)  ->  ( V `  g )  e.  T
)
176, 7, 11, 16syl3anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( V `  g )  e.  T )
18 simpl3r 1013 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  V  =/=  O )
19 simpr 448 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )
20 tendoid0.o . . . . . . . . . . 11  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
211, 2, 3, 8, 20tendoid0 31559 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( ( V `  g )  =  (  _I  |`  B )  <-> 
V  =  O ) )
226, 7, 19, 21syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  (
( V `  g
)  =  (  _I  |`  B )  <->  V  =  O ) )
2322necon3bid 2633 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  (
( V `  g
)  =/=  (  _I  |`  B )  <->  V  =/=  O ) )
2418, 23mpbird 224 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( V `  g )  =/=  (  _I  |`  B ) )
251, 2, 3, 8, 20tendoid0 31559 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( ( V `  g )  e.  T  /\  ( V `  g
)  =/=  (  _I  |`  B ) ) )  ->  ( ( U `
 ( V `  g ) )  =  (  _I  |`  B )  <-> 
U  =  O ) )
266, 15, 17, 24, 25syl112anc 1188 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  (
( U `  ( V `  g )
)  =  (  _I  |`  B )  <->  U  =  O ) )
2726necon3bid 2633 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  (
( U `  ( V `  g )
)  =/=  (  _I  |`  B )  <->  U  =/=  O ) )
2814, 27mpbird 224 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( U `  ( V `  g ) )  =/=  (  _I  |`  B ) )
2913, 28eqnetrd 2616 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  (
( U  o.  V
) `  g )  =/=  (  _I  |`  B ) )
302, 8tendococl 31506 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( U  o.  V )  e.  E
)
316, 15, 7, 30syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( U  o.  V )  e.  E )
321, 2, 3, 8, 20tendoid0 31559 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  o.  V )  e.  E  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( (
( U  o.  V
) `  g )  =  (  _I  |`  B )  <-> 
( U  o.  V
)  =  O ) )
336, 31, 19, 32syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  (
( ( U  o.  V ) `  g
)  =  (  _I  |`  B )  <->  ( U  o.  V )  =  O ) )
3433necon3bid 2633 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  (
( ( U  o.  V ) `  g
)  =/=  (  _I  |`  B )  <->  ( U  o.  V )  =/=  O
) )
3529, 34mpbid 202 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  ( V  e.  E  /\  V  =/=  O
) )  /\  (
g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( U  o.  V )  =/=  O )
365, 35rexlimddv 2826 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/= 
O )  /\  ( V  e.  E  /\  V  =/=  O ) )  ->  ( U  o.  V )  =/=  O
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698    e. cmpt 4258    _I cid 4485    |` cres 4872    o. ccom 4874   -->wf 5442   ` cfv 5446   Basecbs 13461   HLchlt 30085   LHypclh 30718   LTrncltrn 30835   TEndoctendo 31486
This theorem is referenced by:  erngdvlem4  31725  erngdvlem4-rN  31733
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-fal 1329  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-map 7012  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-p1 14461  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-llines 30232  df-lplanes 30233  df-lvols 30234  df-lines 30235  df-psubsp 30237  df-pmap 30238  df-padd 30530  df-lhyp 30722  df-laut 30723  df-ldil 30838  df-ltrn 30839  df-trl 30893  df-tendo 31489
  Copyright terms: Public domain W3C validator