Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendodi1 Unicode version

Theorem tendodi1 31595
Description: Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h  |-  H  =  ( LHyp `  K
)
tendopl.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendopl.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendopl.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
Assertion
Ref Expression
tendodi1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S  o.  ( U P V ) )  =  ( ( S  o.  U ) P ( S  o.  V
) ) )
Distinct variable groups:    t, s, E    f, s, t, T   
f, W, s, t
Allowed substitution hints:    P( t, f, s)    S( t, f, s)    U( t, f, s)    E( f)    H( t, f, s)    K( t, f, s)    V( t, f, s)

Proof of Theorem tendodi1
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simpl 443 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simpr1 961 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  S  e.  E )
3 simpr2 962 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  U  e.  E )
4 simpr3 963 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  V  e.  E )
5 tendopl.h . . . . 5  |-  H  =  ( LHyp `  K
)
6 tendopl.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
7 tendopl.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
8 tendopl.p . . . . 5  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
95, 6, 7, 8tendoplcl 31592 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( U P V )  e.  E
)
101, 3, 4, 9syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( U P V )  e.  E )
115, 7tendococl 31583 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( U P V )  e.  E )  ->  ( S  o.  ( U P V ) )  e.  E )
121, 2, 10, 11syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S  o.  ( U P V ) )  e.  E )
135, 7tendococl 31583 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  U  e.  E
)  ->  ( S  o.  U )  e.  E
)
141, 2, 3, 13syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S  o.  U
)  e.  E )
155, 7tendococl 31583 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  V  e.  E
)  ->  ( S  o.  V )  e.  E
)
161, 2, 4, 15syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S  o.  V
)  e.  E )
175, 6, 7, 8tendoplcl 31592 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  o.  U )  e.  E  /\  ( S  o.  V
)  e.  E )  ->  ( ( S  o.  U ) P ( S  o.  V
) )  e.  E
)
181, 14, 16, 17syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S  o.  U ) P ( S  o.  V ) )  e.  E )
19 simplll 734 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  K  e.  HL )
20 simpllr 735 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  W  e.  H )
21 simplr1 997 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  S  e.  E )
22 simpll 730 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
23 simplr2 998 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  U  e.  E )
24 simpr 447 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  g  e.  T )
255, 6, 7tendocl 31578 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  g  e.  T
)  ->  ( U `  g )  e.  T
)
2622, 23, 24, 25syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( U `  g )  e.  T )
27 simplr3 999 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  V  e.  E )
285, 6, 7tendocl 31578 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  g  e.  T
)  ->  ( V `  g )  e.  T
)
2922, 27, 24, 28syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( V `  g )  e.  T )
305, 6, 7tendovalco 31576 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  S  e.  E )  /\  ( ( U `  g )  e.  T  /\  ( V `  g
)  e.  T ) )  ->  ( S `  ( ( U `  g )  o.  ( V `  g )
) )  =  ( ( S `  ( U `  g )
)  o.  ( S `
 ( V `  g ) ) ) )
3119, 20, 21, 26, 29, 30syl32anc 1190 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( S `  ( ( U `  g )  o.  ( V `  g
) ) )  =  ( ( S `  ( U `  g ) )  o.  ( S `
 ( V `  g ) ) ) )
328, 6tendopl2 31588 . . . . . . 7  |-  ( ( U  e.  E  /\  V  e.  E  /\  g  e.  T )  ->  ( ( U P V ) `  g
)  =  ( ( U `  g )  o.  ( V `  g ) ) )
3323, 27, 24, 32syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( U P V ) `  g )  =  ( ( U `
 g )  o.  ( V `  g
) ) )
3433fveq2d 5545 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( S `  ( ( U P V ) `  g ) )  =  ( S `  (
( U `  g
)  o.  ( V `
 g ) ) ) )
355, 6, 7tendocoval 31577 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E )  /\  g  e.  T )  ->  (
( S  o.  U
) `  g )  =  ( S `  ( U `  g ) ) )
3619, 20, 21, 23, 24, 35syl221anc 1193 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S  o.  U
) `  g )  =  ( S `  ( U `  g ) ) )
375, 6, 7tendocoval 31577 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( S  o.  V
) `  g )  =  ( S `  ( V `  g ) ) )
3819, 20, 21, 27, 24, 37syl221anc 1193 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S  o.  V
) `  g )  =  ( S `  ( V `  g ) ) )
3936, 38coeq12d 4864 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S  o.  U ) `  g
)  o.  ( ( S  o.  V ) `
 g ) )  =  ( ( S `
 ( U `  g ) )  o.  ( S `  ( V `  g )
) ) )
4031, 34, 393eqtr4rd 2339 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S  o.  U ) `  g
)  o.  ( ( S  o.  V ) `
 g ) )  =  ( S `  ( ( U P V ) `  g
) ) )
4122, 21, 23, 13syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( S  o.  U )  e.  E )
4222, 21, 27, 15syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( S  o.  V )  e.  E )
438, 6tendopl2 31588 . . . . 5  |-  ( ( ( S  o.  U
)  e.  E  /\  ( S  o.  V
)  e.  E  /\  g  e.  T )  ->  ( ( ( S  o.  U ) P ( S  o.  V
) ) `  g
)  =  ( ( ( S  o.  U
) `  g )  o.  ( ( S  o.  V ) `  g
) ) )
4441, 42, 24, 43syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S  o.  U ) P ( S  o.  V ) ) `  g )  =  ( ( ( S  o.  U ) `
 g )  o.  ( ( S  o.  V ) `  g
) ) )
4522, 23, 27, 9syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( U P V )  e.  E )
465, 6, 7tendocoval 31577 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  ( U P V )  e.  E )  /\  g  e.  T )  ->  (
( S  o.  ( U P V ) ) `
 g )  =  ( S `  (
( U P V ) `  g ) ) )
4722, 21, 45, 24, 46syl121anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S  o.  ( U P V ) ) `
 g )  =  ( S `  (
( U P V ) `  g ) ) )
4840, 44, 473eqtr4rd 2339 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S  o.  ( U P V ) ) `
 g )  =  ( ( ( S  o.  U ) P ( S  o.  V
) ) `  g
) )
4948ralrimiva 2639 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  A. g  e.  T  ( ( S  o.  ( U P V ) ) `  g )  =  ( ( ( S  o.  U ) P ( S  o.  V ) ) `  g ) )
505, 6, 7tendoeq1 31575 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  o.  ( U P V ) )  e.  E  /\  ( ( S  o.  U ) P ( S  o.  V ) )  e.  E )  /\  A. g  e.  T  (
( S  o.  ( U P V ) ) `
 g )  =  ( ( ( S  o.  U ) P ( S  o.  V
) ) `  g
) )  ->  ( S  o.  ( U P V ) )  =  ( ( S  o.  U ) P ( S  o.  V ) ) )
511, 12, 18, 49, 50syl121anc 1187 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S  o.  ( U P V ) )  =  ( ( S  o.  U ) P ( S  o.  V
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556    e. cmpt 4093    o. ccom 4709   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   HLchlt 30162   LHypclh 30795   LTrncltrn 30912   TEndoctendo 31563
This theorem is referenced by:  erngdvlem3  31801  erngdvlem3-rN  31809
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311  df-lines 30312  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970  df-tendo 31566
  Copyright terms: Public domain W3C validator