Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendodi2 Unicode version

Theorem tendodi2 31043
Description: Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h  |-  H  =  ( LHyp `  K
)
tendopl.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendopl.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendopl.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
Assertion
Ref Expression
tendodi2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S P U )  o.  V
)  =  ( ( S  o.  V ) P ( U  o.  V ) ) )
Distinct variable groups:    t, s, E    f, s, t, T   
f, W, s, t
Allowed substitution hints:    P( t, f, s)    S( t, f, s)    U( t, f, s)    E( f)    H( t, f, s)    K( t, f, s)    V( t, f, s)

Proof of Theorem tendodi2
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simpl 443 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simpr1 961 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  S  e.  E )
3 simpr2 962 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  U  e.  E )
4 tendopl.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 tendopl.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
6 tendopl.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
7 tendopl.p . . . . 5  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
84, 5, 6, 7tendoplcl 31039 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  U  e.  E
)  ->  ( S P U )  e.  E
)
91, 2, 3, 8syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S P U )  e.  E )
10 simpr3 963 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  V  e.  E )
114, 6tendococl 31030 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S P U )  e.  E  /\  V  e.  E
)  ->  ( ( S P U )  o.  V )  e.  E
)
121, 9, 10, 11syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S P U )  o.  V
)  e.  E )
134, 6tendococl 31030 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  V  e.  E
)  ->  ( S  o.  V )  e.  E
)
141, 2, 10, 13syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S  o.  V
)  e.  E )
154, 6tendococl 31030 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( U  o.  V )  e.  E
)
161, 3, 10, 15syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( U  o.  V
)  e.  E )
174, 5, 6, 7tendoplcl 31039 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  o.  V )  e.  E  /\  ( U  o.  V
)  e.  E )  ->  ( ( S  o.  V ) P ( U  o.  V
) )  e.  E
)
181, 14, 16, 17syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S  o.  V ) P ( U  o.  V ) )  e.  E )
19 simpll 730 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
20 simplr1 997 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  S  e.  E )
21 simplr2 998 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  U  e.  E )
2219, 20, 21, 8syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( S P U )  e.  E )
23 simplr3 999 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  V  e.  E )
24 simpr 447 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  g  e.  T )
254, 5, 6tendocoval 31024 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S P U )  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( ( S P U )  o.  V
) `  g )  =  ( ( S P U ) `  ( V `  g ) ) )
2619, 22, 23, 24, 25syl121anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S P U )  o.  V
) `  g )  =  ( ( S P U ) `  ( V `  g ) ) )
27 simplll 734 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  K  e.  HL )
28 simpllr 735 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  W  e.  H )
294, 5, 6tendocoval 31024 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( S  o.  V
) `  g )  =  ( S `  ( V `  g ) ) )
3027, 28, 20, 23, 24, 29syl221anc 1193 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S  o.  V
) `  g )  =  ( S `  ( V `  g ) ) )
314, 5, 6tendocoval 31024 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( U  o.  V
) `  g )  =  ( U `  ( V `  g ) ) )
3227, 28, 21, 23, 24, 31syl221anc 1193 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( U  o.  V
) `  g )  =  ( U `  ( V `  g ) ) )
3330, 32coeq12d 4930 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S  o.  V ) `  g
)  o.  ( ( U  o.  V ) `
 g ) )  =  ( ( S `
 ( V `  g ) )  o.  ( U `  ( V `  g )
) ) )
3419, 20, 23, 13syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( S  o.  V )  e.  E )
3519, 21, 23, 15syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( U  o.  V )  e.  E )
367, 5tendopl2 31035 . . . . . 6  |-  ( ( ( S  o.  V
)  e.  E  /\  ( U  o.  V
)  e.  E  /\  g  e.  T )  ->  ( ( ( S  o.  V ) P ( U  o.  V
) ) `  g
)  =  ( ( ( S  o.  V
) `  g )  o.  ( ( U  o.  V ) `  g
) ) )
3734, 35, 24, 36syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S  o.  V ) P ( U  o.  V ) ) `  g )  =  ( ( ( S  o.  V ) `
 g )  o.  ( ( U  o.  V ) `  g
) ) )
384, 5, 6tendocl 31025 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  g  e.  T
)  ->  ( V `  g )  e.  T
)
3919, 23, 24, 38syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( V `  g )  e.  T )
407, 5tendopl2 31035 . . . . . 6  |-  ( ( S  e.  E  /\  U  e.  E  /\  ( V `  g )  e.  T )  -> 
( ( S P U ) `  ( V `  g )
)  =  ( ( S `  ( V `
 g ) )  o.  ( U `  ( V `  g ) ) ) )
4120, 21, 39, 40syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S P U ) `  ( V `
 g ) )  =  ( ( S `
 ( V `  g ) )  o.  ( U `  ( V `  g )
) ) )
4233, 37, 413eqtr4rd 2401 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S P U ) `  ( V `
 g ) )  =  ( ( ( S  o.  V ) P ( U  o.  V ) ) `  g ) )
4326, 42eqtrd 2390 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S P U )  o.  V
) `  g )  =  ( ( ( S  o.  V ) P ( U  o.  V ) ) `  g ) )
4443ralrimiva 2702 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  A. g  e.  T  ( ( ( S P U )  o.  V ) `  g
)  =  ( ( ( S  o.  V
) P ( U  o.  V ) ) `
 g ) )
454, 5, 6tendoeq1 31022 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( S P U )  o.  V )  e.  E  /\  ( ( S  o.  V ) P ( U  o.  V ) )  e.  E )  /\  A. g  e.  T  (
( ( S P U )  o.  V
) `  g )  =  ( ( ( S  o.  V ) P ( U  o.  V ) ) `  g ) )  -> 
( ( S P U )  o.  V
)  =  ( ( S  o.  V ) P ( U  o.  V ) ) )
461, 12, 18, 44, 45syl121anc 1187 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S P U )  o.  V
)  =  ( ( S  o.  V ) P ( U  o.  V ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   A.wral 2619    e. cmpt 4158    o. ccom 4775   ` cfv 5337  (class class class)co 5945    e. cmpt2 5947   HLchlt 29609   LHypclh 30242   LTrncltrn 30359   TEndoctendo 31010
This theorem is referenced by:  erngdvlem3  31248  erngdvlem3-rN  31256
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-undef 6385  df-riota 6391  df-map 6862  df-poset 14179  df-plt 14191  df-lub 14207  df-glb 14208  df-join 14209  df-meet 14210  df-p0 14244  df-p1 14245  df-lat 14251  df-clat 14313  df-oposet 29435  df-ol 29437  df-oml 29438  df-covers 29525  df-ats 29526  df-atl 29557  df-cvlat 29581  df-hlat 29610  df-llines 29756  df-lplanes 29757  df-lvols 29758  df-lines 29759  df-psubsp 29761  df-pmap 29762  df-padd 30054  df-lhyp 30246  df-laut 30247  df-ldil 30362  df-ltrn 30363  df-trl 30417  df-tendo 31013
  Copyright terms: Public domain W3C validator