Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoex Unicode version

Theorem tendoex 31164
Description: Generalization of Lemma K of [Crawley] p. 118, cdlemk 31163. TODO: can this be used to shorten uses of cdlemk 31163? (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
tendoex.l  |-  .<_  =  ( le `  K )
tendoex.h  |-  H  =  ( LHyp `  K
)
tendoex.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendoex.r  |-  R  =  ( ( trL `  K
) `  W )
tendoex.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
tendoex  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N )  .<_  ( R `  F
) )  ->  E. u  e.  E  ( u `  F )  =  N )
Distinct variable groups:    u, E    u, F    u, K    u, N    u, R    u, T    u, W
Allowed substitution hints:    H( u)    .<_ ( u)

Proof of Theorem tendoex
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 simpl1l 1006 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  e.  ( Atoms `  K
) )  ->  K  e.  HL )
2 hlop 29552 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OP )
31, 2syl 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  e.  ( Atoms `  K
) )  ->  K  e.  OP )
4 simpl1 958 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  e.  ( Atoms `  K
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
5 simpl2r 1009 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  e.  ( Atoms `  K
) )  ->  N  e.  T )
6 eqid 2283 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
7 tendoex.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
8 tendoex.t . . . . . . . 8  |-  T  =  ( ( LTrn `  K
) `  W )
9 tendoex.r . . . . . . . 8  |-  R  =  ( ( trL `  K
) `  W )
106, 7, 8, 9trlcl 30353 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  N  e.  T
)  ->  ( R `  N )  e.  (
Base `  K )
)
114, 5, 10syl2anc 642 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  e.  ( Atoms `  K
) )  ->  ( R `  N )  e.  ( Base `  K
) )
12 simpr 447 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  e.  ( Atoms `  K
) )  ->  ( R `  F )  e.  ( Atoms `  K )
)
13 simpl3 960 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  e.  ( Atoms `  K
) )  ->  ( R `  N )  .<_  ( R `  F
) )
14 tendoex.l . . . . . . 7  |-  .<_  =  ( le `  K )
15 eqid 2283 . . . . . . 7  |-  ( 0.
`  K )  =  ( 0. `  K
)
16 eqid 2283 . . . . . . 7  |-  ( Atoms `  K )  =  (
Atoms `  K )
176, 14, 15, 16leat 29483 . . . . . 6  |-  ( ( ( K  e.  OP  /\  ( R `  N
)  e.  ( Base `  K )  /\  ( R `  F )  e.  ( Atoms `  K )
)  /\  ( R `  N )  .<_  ( R `
 F ) )  ->  ( ( R `
 N )  =  ( R `  F
)  \/  ( R `
 N )  =  ( 0. `  K
) ) )
183, 11, 12, 13, 17syl31anc 1185 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  e.  ( Atoms `  K
) )  ->  (
( R `  N
)  =  ( R `
 F )  \/  ( R `  N
)  =  ( 0.
`  K ) ) )
19 simp3 957 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N )  .<_  ( R `  F
) )  ->  ( R `  N )  .<_  ( R `  F
) )
20 breq2 4027 . . . . . . . . 9  |-  ( ( R `  F )  =  ( 0. `  K )  ->  (
( R `  N
)  .<_  ( R `  F )  <->  ( R `  N )  .<_  ( 0.
`  K ) ) )
2119, 20syl5ibcom 211 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N )  .<_  ( R `  F
) )  ->  (
( R `  F
)  =  ( 0.
`  K )  -> 
( R `  N
)  .<_  ( 0. `  K ) ) )
2221imp 418 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  -> 
( R `  N
)  .<_  ( 0. `  K ) )
23 simpl1l 1006 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  ->  K  e.  HL )
2423, 2syl 15 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  ->  K  e.  OP )
25 simpl1 958 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
26 simpl2r 1009 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  ->  N  e.  T )
2725, 26, 10syl2anc 642 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  -> 
( R `  N
)  e.  ( Base `  K ) )
286, 14, 15ople0 29377 . . . . . . . 8  |-  ( ( K  e.  OP  /\  ( R `  N )  e.  ( Base `  K
) )  ->  (
( R `  N
)  .<_  ( 0. `  K )  <->  ( R `  N )  =  ( 0. `  K ) ) )
2924, 27, 28syl2anc 642 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  -> 
( ( R `  N )  .<_  ( 0.
`  K )  <->  ( R `  N )  =  ( 0. `  K ) ) )
3022, 29mpbid 201 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  -> 
( R `  N
)  =  ( 0.
`  K ) )
3130olcd 382 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N
)  .<_  ( R `  F ) )  /\  ( R `  F )  =  ( 0. `  K ) )  -> 
( ( R `  N )  =  ( R `  F )  \/  ( R `  N )  =  ( 0. `  K ) ) )
32 simp1 955 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N )  .<_  ( R `  F
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
33 simp2l 981 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N )  .<_  ( R `  F
) )  ->  F  e.  T )
3415, 16, 7, 8, 9trlator0 30360 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( ( R `  F )  e.  ( Atoms `  K )  \/  ( R `  F
)  =  ( 0.
`  K ) ) )
3532, 33, 34syl2anc 642 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N )  .<_  ( R `  F
) )  ->  (
( R `  F
)  e.  ( Atoms `  K )  \/  ( R `  F )  =  ( 0. `  K ) ) )
3618, 31, 35mpjaodan 761 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N )  .<_  ( R `  F
) )  ->  (
( R `  N
)  =  ( R `
 F )  \/  ( R `  N
)  =  ( 0.
`  K ) ) )
37363expa 1151 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  .<_  ( R `
 F ) )  ->  ( ( R `
 N )  =  ( R `  F
)  \/  ( R `
 N )  =  ( 0. `  K
) ) )
38 eqcom 2285 . . . . 5  |-  ( ( R `  N )  =  ( R `  F )  <->  ( R `  F )  =  ( R `  N ) )
39 tendoex.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
407, 8, 9, 39cdlemk 31163 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  F )  =  ( R `  N ) )  ->  E. u  e.  E  ( u `  F
)  =  N )
41403expa 1151 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  F )  =  ( R `  N ) )  ->  E. u  e.  E  ( u `  F )  =  N )
4238, 41sylan2b 461 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  =  ( R `  F ) )  ->  E. u  e.  E  ( u `  F )  =  N )
43 eqid 2283 . . . . . . 7  |-  ( h  e.  T  |->  (  _I  |`  ( Base `  K
) ) )  =  ( h  e.  T  |->  (  _I  |`  ( Base `  K ) ) )
446, 7, 8, 39, 43tendo0cl 30979 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( h  e.  T  |->  (  _I  |`  ( Base `  K ) ) )  e.  E )
4544ad2antrr 706 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  =  ( 0. `  K ) )  ->  ( h  e.  T  |->  (  _I  |`  ( Base `  K
) ) )  e.  E )
46 simplrl 736 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  =  ( 0. `  K ) )  ->  F  e.  T )
4743, 6tendo02 30976 . . . . . . 7  |-  ( F  e.  T  ->  (
( h  e.  T  |->  (  _I  |`  ( Base `  K ) ) ) `  F )  =  (  _I  |`  ( Base `  K ) ) )
4846, 47syl 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  =  ( 0. `  K ) )  ->  ( (
h  e.  T  |->  (  _I  |`  ( Base `  K ) ) ) `
 F )  =  (  _I  |`  ( Base `  K ) ) )
496, 15, 7, 8, 9trlid0b 30367 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  N  e.  T
)  ->  ( N  =  (  _I  |`  ( Base `  K ) )  <-> 
( R `  N
)  =  ( 0.
`  K ) ) )
5049adantrl 696 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T ) )  -> 
( N  =  (  _I  |`  ( Base `  K ) )  <->  ( R `  N )  =  ( 0. `  K ) ) )
5150biimpar 471 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  =  ( 0. `  K ) )  ->  N  =  (  _I  |`  ( Base `  K ) ) )
5248, 51eqtr4d 2318 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  =  ( 0. `  K ) )  ->  ( (
h  e.  T  |->  (  _I  |`  ( Base `  K ) ) ) `
 F )  =  N )
53 fveq1 5524 . . . . . . 7  |-  ( u  =  ( h  e.  T  |->  (  _I  |`  ( Base `  K ) ) )  ->  ( u `  F )  =  ( ( h  e.  T  |->  (  _I  |`  ( Base `  K ) ) ) `  F ) )
5453eqeq1d 2291 . . . . . 6  |-  ( u  =  ( h  e.  T  |->  (  _I  |`  ( Base `  K ) ) )  ->  ( (
u `  F )  =  N  <->  ( ( h  e.  T  |->  (  _I  |`  ( Base `  K
) ) ) `  F )  =  N ) )
5554rspcev 2884 . . . . 5  |-  ( ( ( h  e.  T  |->  (  _I  |`  ( Base `  K ) ) )  e.  E  /\  ( ( h  e.  T  |->  (  _I  |`  ( Base `  K ) ) ) `  F )  =  N )  ->  E. u  e.  E  ( u `  F
)  =  N )
5645, 52, 55syl2anc 642 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  =  ( 0. `  K ) )  ->  E. u  e.  E  ( u `  F )  =  N )
5742, 56jaodan 760 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( ( R `  N )  =  ( R `  F )  \/  ( R `  N )  =  ( 0. `  K ) ) )  ->  E. u  e.  E  ( u `  F
)  =  N )
5837, 57syldan 456 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )
)  /\  ( R `  N )  .<_  ( R `
 F ) )  ->  E. u  e.  E  ( u `  F
)  =  N )
59583impa 1146 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  N )  .<_  ( R `  F
) )  ->  E. u  e.  E  ( u `  F )  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   E.wrex 2544   class class class wbr 4023    e. cmpt 4077    _I cid 4304    |` cres 4691   ` cfv 5255   Basecbs 13148   lecple 13215   0.cp0 14143   OPcops 29362   Atomscatm 29453   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   trLctrl 30347   TEndoctendo 30941
This theorem is referenced by:  dva1dim  31174  dihjatcclem4  31611
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348  df-tendo 30944
  Copyright terms: Public domain W3C validator