Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoicbv Structured version   Unicode version

Theorem tendoicbv 31517
 Description: Define inverse function for trace-perserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 12-Jun-2013.)
Hypothesis
Ref Expression
tendoi.i
Assertion
Ref Expression
tendoicbv
Distinct variable groups:   ,,   ,,,,
Allowed substitution hints:   (,)   (,,,)

Proof of Theorem tendoicbv
StepHypRef Expression
1 tendoi.i . 2
2 fveq1 5719 . . . . . 6
32cnveqd 5040 . . . . 5
43mpteq2dv 4288 . . . 4
5 fveq2 5720 . . . . . 6
65cnveqd 5040 . . . . 5
76cbvmptv 4292 . . . 4
84, 7syl6eq 2483 . . 3
98cbvmptv 4292 . 2
101, 9eqtri 2455 1
 Colors of variables: wff set class Syntax hints:   wceq 1652   cmpt 4258  ccnv 4869  cfv 5446 This theorem is referenced by:  tendoi  31518 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-cnv 4878  df-iota 5410  df-fv 5454
 Copyright terms: Public domain W3C validator