Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoid0 Unicode version

Theorem tendoid0 31014
Description: A trace-preserving endomorphism is the additive identity iff at least one of its values (at a non-identity translation) is the identity translation. (Contributed by NM, 1-Aug-2013.)
Hypotheses
Ref Expression
tendoid0.b  |-  B  =  ( Base `  K
)
tendoid0.h  |-  H  =  ( LHyp `  K
)
tendoid0.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendoid0.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendoid0.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
tendoid0  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  ( ( U `  F )  =  (  _I  |`  B )  <-> 
U  =  O ) )
Distinct variable groups:    B, f    T, f
Allowed substitution hints:    U( f)    E( f)    F( f)    H( f)    K( f)    O( f)    W( f)

Proof of Theorem tendoid0
StepHypRef Expression
1 simp3l 983 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  F  e.  T )
2 tendoid0.o . . . . . 6  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
3 tendoid0.b . . . . . 6  |-  B  =  ( Base `  K
)
42, 3tendo02 30976 . . . . 5  |-  ( F  e.  T  ->  ( O `  F )  =  (  _I  |`  B ) )
51, 4syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  ( O `  F )  =  (  _I  |`  B )
)
65eqeq2d 2294 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  ( ( U `  F )  =  ( O `  F )  <->  ( U `  F )  =  (  _I  |`  B )
) )
7 simpl1 958 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  ( U `  F )  =  ( O `  F ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
8 simpl2 959 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  ( U `  F )  =  ( O `  F ) )  ->  U  e.  E )
9 tendoid0.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
10 tendoid0.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
11 tendoid0.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
123, 9, 10, 11, 2tendo0cl 30979 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
137, 12syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  ( U `  F )  =  ( O `  F ) )  ->  O  e.  E )
14 simpr 447 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  ( U `  F )  =  ( O `  F ) )  -> 
( U `  F
)  =  ( O `
 F ) )
15 simpl3l 1010 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  ( U `  F )  =  ( O `  F ) )  ->  F  e.  T )
16 simpl3r 1011 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  ( U `  F )  =  ( O `  F ) )  ->  F  =/=  (  _I  |`  B ) )
173, 9, 10, 11tendocan 31013 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  O  e.  E  /\  ( U `
 F )  =  ( O `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  U  =  O )
187, 8, 13, 14, 15, 16, 17syl132anc 1200 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  ( U `  F )  =  ( O `  F ) )  ->  U  =  O )
1918ex 423 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  ( ( U `  F )  =  ( O `  F )  ->  U  =  O ) )
206, 19sylbird 226 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  ( ( U `  F )  =  (  _I  |`  B )  ->  U  =  O ) )
21 fveq1 5524 . . . 4  |-  ( U  =  O  ->  ( U `  F )  =  ( O `  F ) )
2221eqeq1d 2291 . . 3  |-  ( U  =  O  ->  (
( U `  F
)  =  (  _I  |`  B )  <->  ( O `  F )  =  (  _I  |`  B )
) )
235, 22syl5ibrcom 213 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  ( U  =  O  ->  ( U `
 F )  =  (  _I  |`  B ) ) )
2420, 23impbid 183 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  ( ( U `  F )  =  (  _I  |`  B )  <-> 
U  =  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446    e. cmpt 4077    _I cid 4304    |` cres 4691   ` cfv 5255   Basecbs 13148   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   TEndoctendo 30941
This theorem is referenced by:  tendoconid  31018  tendotr  31019  cdleml3N  31167  tendospcanN  31213
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348  df-tendo 30944
  Copyright terms: Public domain W3C validator