Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoipl Unicode version

Theorem tendoipl 30986
Description: Property of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendoicl.h  |-  H  =  ( LHyp `  K
)
tendoicl.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendoicl.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendoicl.i  |-  I  =  ( s  e.  E  |->  ( f  e.  T  |->  `' ( s `  f ) ) )
tendoi.b  |-  B  =  ( Base `  K
)
tendoi.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
tendoi.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
tendoipl  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( (
I `  S ) P S )  =  O )
Distinct variable groups:    E, s    f, s, T    f, W, s    B, f    t, E   
f, H    f, K    t, f, s, T    t, W
Allowed substitution hints:    B( t, s)    P( t, f, s)    S( t, f, s)    E( f)    H( t, s)    I( t, f, s)    K( t, s)    O( t, f, s)

Proof of Theorem tendoipl
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simpl 443 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 tendoicl.h . . . 4  |-  H  =  ( LHyp `  K
)
3 tendoicl.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
4 tendoicl.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
5 tendoicl.i . . . 4  |-  I  =  ( s  e.  E  |->  ( f  e.  T  |->  `' ( s `  f ) ) )
62, 3, 4, 5tendoicl 30985 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( I `  S )  e.  E
)
7 simpr 447 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  S  e.  E )
8 tendoi.p . . . 4  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
92, 3, 4, 8tendoplcl 30970 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( I `  S )  e.  E  /\  S  e.  E
)  ->  ( (
I `  S ) P S )  e.  E
)
101, 6, 7, 9syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( (
I `  S ) P S )  e.  E
)
11 tendoi.b . . . 4  |-  B  =  ( Base `  K
)
12 tendoi.o . . . 4  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
1311, 2, 3, 4, 12tendo0cl 30979 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
1413adantr 451 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  O  e.  E )
155, 3tendoi2 30984 . . . . . . 7  |-  ( ( S  e.  E  /\  g  e.  T )  ->  ( ( I `  S ) `  g
)  =  `' ( S `  g ) )
1615adantll 694 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  (
( I `  S
) `  g )  =  `' ( S `  g ) )
1716coeq1d 4845 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  (
( ( I `  S ) `  g
)  o.  ( S `
 g ) )  =  ( `' ( S `  g )  o.  ( S `  g ) ) )
18 simpll 730 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
192, 3, 4tendocl 30956 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  g  e.  T
)  ->  ( S `  g )  e.  T
)
20193expa 1151 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  ( S `  g )  e.  T )
2111, 2, 3ltrn1o 30313 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S `  g )  e.  T
)  ->  ( S `  g ) : B -1-1-onto-> B
)
2218, 20, 21syl2anc 642 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  ( S `  g ) : B -1-1-onto-> B )
23 f1ococnv1 5502 . . . . . 6  |-  ( ( S `  g ) : B -1-1-onto-> B  ->  ( `' ( S `  g )  o.  ( S `  g ) )  =  (  _I  |`  B ) )
2422, 23syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  ( `' ( S `  g )  o.  ( S `  g )
)  =  (  _I  |`  B ) )
2517, 24eqtrd 2315 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  (
( ( I `  S ) `  g
)  o.  ( S `
 g ) )  =  (  _I  |`  B ) )
266adantr 451 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  (
I `  S )  e.  E )
27 simplr 731 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  S  e.  E )
28 simpr 447 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  g  e.  T )
298, 3tendopl2 30966 . . . . 5  |-  ( ( ( I `  S
)  e.  E  /\  S  e.  E  /\  g  e.  T )  ->  ( ( ( I `
 S ) P S ) `  g
)  =  ( ( ( I `  S
) `  g )  o.  ( S `  g
) ) )
3026, 27, 28, 29syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  (
( ( I `  S ) P S ) `  g )  =  ( ( ( I `  S ) `
 g )  o.  ( S `  g
) ) )
3112, 11tendo02 30976 . . . . 5  |-  ( g  e.  T  ->  ( O `  g )  =  (  _I  |`  B ) )
3231adantl 452 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  ( O `  g )  =  (  _I  |`  B ) )
3325, 30, 323eqtr4d 2325 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  (
( ( I `  S ) P S ) `  g )  =  ( O `  g ) )
3433ralrimiva 2626 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  A. g  e.  T  ( (
( I `  S
) P S ) `
 g )  =  ( O `  g
) )
352, 3, 4tendoeq1 30953 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( I `  S ) P S )  e.  E  /\  O  e.  E )  /\  A. g  e.  T  (
( ( I `  S ) P S ) `  g )  =  ( O `  g ) )  -> 
( ( I `  S ) P S )  =  O )
361, 10, 14, 34, 35syl121anc 1187 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( (
I `  S ) P S )  =  O )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543    e. cmpt 4077    _I cid 4304   `'ccnv 4688    |` cres 4691    o. ccom 4693   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   Basecbs 13148   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   TEndoctendo 30941
This theorem is referenced by:  tendoipl2  30987  erngdvlem1  31177  erngdvlem1-rN  31185
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348  df-tendo 30944
  Copyright terms: Public domain W3C validator