Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplass Structured version   Unicode version

Theorem tendoplass 31678
Description: The endomorphism sum operation is associative. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h  |-  H  =  ( LHyp `  K
)
tendopl.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendopl.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendopl.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
Assertion
Ref Expression
tendoplass  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S P U ) P V )  =  ( S P ( U P V ) ) )
Distinct variable groups:    t, s, E    f, s, t, T   
f, W, s, t
Allowed substitution hints:    P( t, f, s)    S( t, f, s)    U( t, f, s)    E( f)    H( t, f, s)    K( t, f, s)    V( t, f, s)

Proof of Theorem tendoplass
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simpl 445 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simpr1 964 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  S  e.  E )
3 simpr2 965 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  U  e.  E )
4 tendopl.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 tendopl.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
6 tendopl.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
7 tendopl.p . . . . 5  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
84, 5, 6, 7tendoplcl 31676 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  U  e.  E
)  ->  ( S P U )  e.  E
)
91, 2, 3, 8syl3anc 1185 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S P U )  e.  E )
10 simpr3 966 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  V  e.  E )
114, 5, 6, 7tendoplcl 31676 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S P U )  e.  E  /\  V  e.  E
)  ->  ( ( S P U ) P V )  e.  E
)
121, 9, 10, 11syl3anc 1185 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S P U ) P V )  e.  E )
134, 5, 6, 7tendoplcl 31676 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( U P V )  e.  E
)
141, 3, 10, 13syl3anc 1185 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( U P V )  e.  E )
154, 5, 6, 7tendoplcl 31676 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( U P V )  e.  E )  ->  ( S P ( U P V ) )  e.  E
)
161, 2, 14, 15syl3anc 1185 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S P ( U P V ) )  e.  E )
17 coass 5417 . . . . 5  |-  ( ( ( S `  g
)  o.  ( U `
 g ) )  o.  ( V `  g ) )  =  ( ( S `  g )  o.  (
( U `  g
)  o.  ( V `
 g ) ) )
18 simplr1 1000 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  S  e.  E )
19 simplr2 1001 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  U  e.  E )
20 simpr 449 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  g  e.  T )
217, 5tendopl2 31672 . . . . . . 7  |-  ( ( S  e.  E  /\  U  e.  E  /\  g  e.  T )  ->  ( ( S P U ) `  g
)  =  ( ( S `  g )  o.  ( U `  g ) ) )
2218, 19, 20, 21syl3anc 1185 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S P U ) `  g )  =  ( ( S `
 g )  o.  ( U `  g
) ) )
2322coeq1d 5063 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S P U ) `  g
)  o.  ( V `
 g ) )  =  ( ( ( S `  g )  o.  ( U `  g ) )  o.  ( V `  g
) ) )
24 simplr3 1002 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  V  e.  E )
257, 5tendopl2 31672 . . . . . . 7  |-  ( ( U  e.  E  /\  V  e.  E  /\  g  e.  T )  ->  ( ( U P V ) `  g
)  =  ( ( U `  g )  o.  ( V `  g ) ) )
2619, 24, 20, 25syl3anc 1185 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( U P V ) `  g )  =  ( ( U `
 g )  o.  ( V `  g
) ) )
2726coeq2d 5064 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S `  g
)  o.  ( ( U P V ) `
 g ) )  =  ( ( S `
 g )  o.  ( ( U `  g )  o.  ( V `  g )
) ) )
2817, 23, 273eqtr4a 2500 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S P U ) `  g
)  o.  ( V `
 g ) )  =  ( ( S `
 g )  o.  ( ( U P V ) `  g
) ) )
299adantr 453 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( S P U )  e.  E )
307, 5tendopl2 31672 . . . . 5  |-  ( ( ( S P U )  e.  E  /\  V  e.  E  /\  g  e.  T )  ->  ( ( ( S P U ) P V ) `  g
)  =  ( ( ( S P U ) `  g )  o.  ( V `  g ) ) )
3129, 24, 20, 30syl3anc 1185 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S P U ) P V ) `  g )  =  ( ( ( S P U ) `
 g )  o.  ( V `  g
) ) )
3214adantr 453 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( U P V )  e.  E )
337, 5tendopl2 31672 . . . . 5  |-  ( ( S  e.  E  /\  ( U P V )  e.  E  /\  g  e.  T )  ->  (
( S P ( U P V ) ) `  g )  =  ( ( S `
 g )  o.  ( ( U P V ) `  g
) ) )
3418, 32, 20, 33syl3anc 1185 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S P ( U P V ) ) `  g )  =  ( ( S `
 g )  o.  ( ( U P V ) `  g
) ) )
3528, 31, 343eqtr4d 2484 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S P U ) P V ) `  g )  =  ( ( S P ( U P V ) ) `  g ) )
3635ralrimiva 2795 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  A. g  e.  T  ( ( ( S P U ) P V ) `  g
)  =  ( ( S P ( U P V ) ) `
 g ) )
374, 5, 6tendoeq1 31659 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( S P U ) P V )  e.  E  /\  ( S P ( U P V ) )  e.  E )  /\  A. g  e.  T  (
( ( S P U ) P V ) `  g )  =  ( ( S P ( U P V ) ) `  g ) )  -> 
( ( S P U ) P V )  =  ( S P ( U P V ) ) )
381, 12, 16, 36, 37syl121anc 1190 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S P U ) P V )  =  ( S P ( U P V ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727   A.wral 2711    e. cmpt 4291    o. ccom 4911   ` cfv 5483  (class class class)co 6110    e. cmpt2 6112   HLchlt 30246   LHypclh 30879   LTrncltrn 30996   TEndoctendo 31647
This theorem is referenced by:  erngdvlem1  31883  erngdvlem1-rN  31891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-iun 4119  df-iin 4120  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-undef 6572  df-riota 6578  df-map 7049  df-poset 14434  df-plt 14446  df-lub 14462  df-glb 14463  df-join 14464  df-meet 14465  df-p0 14499  df-p1 14500  df-lat 14506  df-clat 14568  df-oposet 30072  df-ol 30074  df-oml 30075  df-covers 30162  df-ats 30163  df-atl 30194  df-cvlat 30218  df-hlat 30247  df-llines 30393  df-lplanes 30394  df-lvols 30395  df-lines 30396  df-psubsp 30398  df-pmap 30399  df-padd 30691  df-lhyp 30883  df-laut 30884  df-ldil 30999  df-ltrn 31000  df-trl 31054  df-tendo 31650
  Copyright terms: Public domain W3C validator