Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplcl2 Unicode version

Theorem tendoplcl2 30967
Description: Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h  |-  H  =  ( LHyp `  K
)
tendopl.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendopl.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendopl.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
Assertion
Ref Expression
tendoplcl2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  (
( U P V ) `  F )  e.  T )
Distinct variable groups:    t, s, E    f, s, t, T   
f, W, s, t
Allowed substitution hints:    P( t, f, s)    U( t, f, s)    E( f)    F( t, f, s)    H( t, f, s)    K( t, f, s)    V( t, f, s)

Proof of Theorem tendoplcl2
StepHypRef Expression
1 tendopl.p . . . . 5  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
2 tendopl.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
31, 2tendopl2 30966 . . . 4  |-  ( ( U  e.  E  /\  V  e.  E  /\  F  e.  T )  ->  ( ( U P V ) `  F
)  =  ( ( U `  F )  o.  ( V `  F ) ) )
433expa 1151 . . 3  |-  ( ( ( U  e.  E  /\  V  e.  E
)  /\  F  e.  T )  ->  (
( U P V ) `  F )  =  ( ( U `
 F )  o.  ( V `  F
) ) )
543adant1 973 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  (
( U P V ) `  F )  =  ( ( U `
 F )  o.  ( V `  F
) ) )
6 simp1 955 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 tendopl.h . . . . 5  |-  H  =  ( LHyp `  K
)
8 tendopl.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
97, 2, 8tendocl 30956 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  F  e.  T
)  ->  ( U `  F )  e.  T
)
1093adant2r 1177 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( U `  F )  e.  T )
117, 2, 8tendocl 30956 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  F  e.  T
)  ->  ( V `  F )  e.  T
)
12113adant2l 1176 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  ( V `  F )  e.  T )
137, 2ltrnco 30908 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U `  F )  e.  T  /\  ( V `  F
)  e.  T )  ->  ( ( U `
 F )  o.  ( V `  F
) )  e.  T
)
146, 10, 12, 13syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  (
( U `  F
)  o.  ( V `
 F ) )  e.  T )
155, 14eqeltrd 2357 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  F  e.  T )  ->  (
( U P V ) `  F )  e.  T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    e. cmpt 4077    o. ccom 4693   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   TEndoctendo 30941
This theorem is referenced by:  tendopltp  30969
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348  df-tendo 30944
  Copyright terms: Public domain W3C validator