Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplcom Unicode version

Theorem tendoplcom 31030
Description: The endomorphism sum operation is commutative. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h  |-  H  =  ( LHyp `  K
)
tendopl.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendopl.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendopl.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
Assertion
Ref Expression
tendoplcom  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( U P V )  =  ( V P U ) )
Distinct variable groups:    t, s, E    f, s, t, T   
f, W, s, t
Allowed substitution hints:    P( t, f, s)    U( t, f, s)    E( f)    H( t, f, s)    K( t, f, s)    V( t, f, s)

Proof of Theorem tendoplcom
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simp1 956 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 tendopl.h . . 3  |-  H  =  ( LHyp `  K
)
3 tendopl.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
4 tendopl.e . . 3  |-  E  =  ( ( TEndo `  K
) `  W )
5 tendopl.p . . 3  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
62, 3, 4, 5tendoplcl 31029 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( U P V )  e.  E
)
72, 3, 4, 5tendoplcl 31029 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  U  e.  E
)  ->  ( V P U )  e.  E
)
873com23 1158 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( V P U )  e.  E
)
9 simpl1 959 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
10 simpl2 960 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  U  e.  E )
11 simpr 447 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  g  e.  T )
122, 3, 4tendocl 31015 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  g  e.  T
)  ->  ( U `  g )  e.  T
)
139, 10, 11, 12syl3anc 1183 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  ( U `  g )  e.  T )
14 simpl3 961 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  V  e.  E )
152, 3, 4tendocl 31015 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  g  e.  T
)  ->  ( V `  g )  e.  T
)
169, 14, 11, 15syl3anc 1183 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  ( V `  g )  e.  T )
172, 3ltrncom 30986 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U `  g )  e.  T  /\  ( V `  g
)  e.  T )  ->  ( ( U `
 g )  o.  ( V `  g
) )  =  ( ( V `  g
)  o.  ( U `
 g ) ) )
189, 13, 16, 17syl3anc 1183 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( U `  g
)  o.  ( V `
 g ) )  =  ( ( V `
 g )  o.  ( U `  g
) ) )
195, 3tendopl2 31025 . . . . 5  |-  ( ( U  e.  E  /\  V  e.  E  /\  g  e.  T )  ->  ( ( U P V ) `  g
)  =  ( ( U `  g )  o.  ( V `  g ) ) )
2010, 14, 11, 19syl3anc 1183 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( U P V ) `  g )  =  ( ( U `
 g )  o.  ( V `  g
) ) )
215, 3tendopl2 31025 . . . . 5  |-  ( ( V  e.  E  /\  U  e.  E  /\  g  e.  T )  ->  ( ( V P U ) `  g
)  =  ( ( V `  g )  o.  ( U `  g ) ) )
2214, 10, 11, 21syl3anc 1183 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( V P U ) `  g )  =  ( ( V `
 g )  o.  ( U `  g
) ) )
2318, 20, 223eqtr4d 2408 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( U P V ) `  g )  =  ( ( V P U ) `  g ) )
2423ralrimiva 2711 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  A. g  e.  T  ( ( U P V ) `  g )  =  ( ( V P U ) `  g ) )
252, 3, 4tendoeq1 31012 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( U P V )  e.  E  /\  ( V P U )  e.  E )  /\  A. g  e.  T  (
( U P V ) `  g )  =  ( ( V P U ) `  g ) )  -> 
( U P V )  =  ( V P U ) )
261, 6, 8, 24, 25syl121anc 1188 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( U P V )  =  ( V P U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   A.wral 2628    e. cmpt 4179    o. ccom 4796   ` cfv 5358  (class class class)co 5981    e. cmpt2 5983   HLchlt 29599   LHypclh 30232   LTrncltrn 30349   TEndoctendo 31000
This theorem is referenced by:  tendo0plr  31040  tendoipl2  31046  erngdvlem2N  31237  erngdvlem2-rN  31245  dvhvaddcomN  31345
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-iin 4010  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-undef 6440  df-riota 6446  df-map 6917  df-poset 14290  df-plt 14302  df-lub 14318  df-glb 14319  df-join 14320  df-meet 14321  df-p0 14355  df-p1 14356  df-lat 14362  df-clat 14424  df-oposet 29425  df-ol 29427  df-oml 29428  df-covers 29515  df-ats 29516  df-atl 29547  df-cvlat 29571  df-hlat 29600  df-llines 29746  df-lplanes 29747  df-lvols 29748  df-lines 29749  df-psubsp 29751  df-pmap 29752  df-padd 30044  df-lhyp 30236  df-laut 30237  df-ldil 30352  df-ltrn 30353  df-trl 30407  df-tendo 31003
  Copyright terms: Public domain W3C validator