Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplcom Structured version   Unicode version

Theorem tendoplcom 31652
Description: The endomorphism sum operation is commutative. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h  |-  H  =  ( LHyp `  K
)
tendopl.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendopl.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendopl.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
Assertion
Ref Expression
tendoplcom  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( U P V )  =  ( V P U ) )
Distinct variable groups:    t, s, E    f, s, t, T   
f, W, s, t
Allowed substitution hints:    P( t, f, s)    U( t, f, s)    E( f)    H( t, f, s)    K( t, f, s)    V( t, f, s)

Proof of Theorem tendoplcom
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simp1 958 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 tendopl.h . . 3  |-  H  =  ( LHyp `  K
)
3 tendopl.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
4 tendopl.e . . 3  |-  E  =  ( ( TEndo `  K
) `  W )
5 tendopl.p . . 3  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
62, 3, 4, 5tendoplcl 31651 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( U P V )  e.  E
)
72, 3, 4, 5tendoplcl 31651 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  U  e.  E
)  ->  ( V P U )  e.  E
)
873com23 1160 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( V P U )  e.  E
)
9 simpl1 961 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
10 simpl2 962 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  U  e.  E )
11 simpr 449 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  g  e.  T )
122, 3, 4tendocl 31637 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  g  e.  T
)  ->  ( U `  g )  e.  T
)
139, 10, 11, 12syl3anc 1185 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  ( U `  g )  e.  T )
14 simpl3 963 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  V  e.  E )
152, 3, 4tendocl 31637 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  g  e.  T
)  ->  ( V `  g )  e.  T
)
169, 14, 11, 15syl3anc 1185 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  ( V `  g )  e.  T )
172, 3ltrncom 31608 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U `  g )  e.  T  /\  ( V `  g
)  e.  T )  ->  ( ( U `
 g )  o.  ( V `  g
) )  =  ( ( V `  g
)  o.  ( U `
 g ) ) )
189, 13, 16, 17syl3anc 1185 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( U `  g
)  o.  ( V `
 g ) )  =  ( ( V `
 g )  o.  ( U `  g
) ) )
195, 3tendopl2 31647 . . . . 5  |-  ( ( U  e.  E  /\  V  e.  E  /\  g  e.  T )  ->  ( ( U P V ) `  g
)  =  ( ( U `  g )  o.  ( V `  g ) ) )
2010, 14, 11, 19syl3anc 1185 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( U P V ) `  g )  =  ( ( U `
 g )  o.  ( V `  g
) ) )
215, 3tendopl2 31647 . . . . 5  |-  ( ( V  e.  E  /\  U  e.  E  /\  g  e.  T )  ->  ( ( V P U ) `  g
)  =  ( ( V `  g )  o.  ( U `  g ) ) )
2214, 10, 11, 21syl3anc 1185 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( V P U ) `  g )  =  ( ( V `
 g )  o.  ( U `  g
) ) )
2318, 20, 223eqtr4d 2480 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( U P V ) `  g )  =  ( ( V P U ) `  g ) )
2423ralrimiva 2791 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  A. g  e.  T  ( ( U P V ) `  g )  =  ( ( V P U ) `  g ) )
252, 3, 4tendoeq1 31634 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( U P V )  e.  E  /\  ( V P U )  e.  E )  /\  A. g  e.  T  (
( U P V ) `  g )  =  ( ( V P U ) `  g ) )  -> 
( U P V )  =  ( V P U ) )
261, 6, 8, 24, 25syl121anc 1190 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( U P V )  =  ( V P U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707    e. cmpt 4269    o. ccom 4885   ` cfv 5457  (class class class)co 6084    e. cmpt2 6086   HLchlt 30221   LHypclh 30854   LTrncltrn 30971   TEndoctendo 31622
This theorem is referenced by:  tendo0plr  31662  tendoipl2  31668  erngdvlem2N  31859  erngdvlem2-rN  31867  dvhvaddcomN  31967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-undef 6546  df-riota 6552  df-map 7023  df-poset 14408  df-plt 14420  df-lub 14436  df-glb 14437  df-join 14438  df-meet 14439  df-p0 14473  df-p1 14474  df-lat 14480  df-clat 14542  df-oposet 30047  df-ol 30049  df-oml 30050  df-covers 30137  df-ats 30138  df-atl 30169  df-cvlat 30193  df-hlat 30222  df-llines 30368  df-lplanes 30369  df-lvols 30370  df-lines 30371  df-psubsp 30373  df-pmap 30374  df-padd 30666  df-lhyp 30858  df-laut 30859  df-ldil 30974  df-ltrn 30975  df-trl 31029  df-tendo 31625
  Copyright terms: Public domain W3C validator