Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendospdi1 Unicode version

Theorem tendospdi1 31210
Description: Forward distributive law for endomorphism scalar product operation. (Contributed by NM, 10-Oct-2013.)
Hypotheses
Ref Expression
tendosp.h  |-  H  =  ( LHyp `  K
)
tendosp.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendosp.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
tendospdi1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T ) )  -> 
( U `  ( F  o.  G )
)  =  ( ( U `  F )  o.  ( U `  G ) ) )

Proof of Theorem tendospdi1
StepHypRef Expression
1 simpll 730 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T ) )  ->  K  e.  V )
2 simplr 731 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T ) )  ->  W  e.  H )
3 simpr1 961 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T ) )  ->  U  e.  E )
4 simpr2 962 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T ) )  ->  F  e.  T )
5 simpr3 963 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T ) )  ->  G  e.  T )
6 tendosp.h . . 3  |-  H  =  ( LHyp `  K
)
7 tendosp.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
8 tendosp.e . . 3  |-  E  =  ( ( TEndo `  K
) `  W )
96, 7, 8tendovalco 30954 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H  /\  U  e.  E
)  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( U `  ( F  o.  G )
)  =  ( ( U `  F )  o.  ( U `  G ) ) )
101, 2, 3, 4, 5, 9syl32anc 1190 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( U  e.  E  /\  F  e.  T  /\  G  e.  T ) )  -> 
( U `  ( F  o.  G )
)  =  ( ( U `  F )  o.  ( U `  G ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    o. ccom 4693   ` cfv 5255   LHypclh 30173   LTrncltrn 30290   TEndoctendo 30941
This theorem is referenced by:  tendocnv  31211  tendospcanN  31213  dvalveclem  31215  dvhlveclem  31298  dihjatcclem4  31611
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-tendo 30944
  Copyright terms: Public domain W3C validator