Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendotp Unicode version

Theorem tendotp 31572
Description: Trace-preserving property of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l  |-  .<_  =  ( le `  K )
tendoset.h  |-  H  =  ( LHyp `  K
)
tendoset.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendoset.r  |-  R  =  ( ( trL `  K
) `  W )
tendoset.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
tendotp  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  S  e.  E  /\  F  e.  T
)  ->  ( R `  ( S `  F
) )  .<_  ( R `
 F ) )

Proof of Theorem tendotp
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tendoset.l . . . 4  |-  .<_  =  ( le `  K )
2 tendoset.h . . . 4  |-  H  =  ( LHyp `  K
)
3 tendoset.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
4 tendoset.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
5 tendoset.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
61, 2, 3, 4, 5istendo 31571 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( S  e.  E  <->  ( S : T --> T  /\  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g ) )  =  ( ( S `  f )  o.  ( S `  g )
)  /\  A. f  e.  T  ( R `  ( S `  f
) )  .<_  ( R `
 f ) ) ) )
7 fveq2 5541 . . . . . . 7  |-  ( f  =  F  ->  ( S `  f )  =  ( S `  F ) )
87fveq2d 5545 . . . . . 6  |-  ( f  =  F  ->  ( R `  ( S `  f ) )  =  ( R `  ( S `  F )
) )
9 fveq2 5541 . . . . . 6  |-  ( f  =  F  ->  ( R `  f )  =  ( R `  F ) )
108, 9breq12d 4052 . . . . 5  |-  ( f  =  F  ->  (
( R `  ( S `  f )
)  .<_  ( R `  f )  <->  ( R `  ( S `  F
) )  .<_  ( R `
 F ) ) )
1110rspccv 2894 . . . 4  |-  ( A. f  e.  T  ( R `  ( S `  f ) )  .<_  ( R `  f )  ->  ( F  e.  T  ->  ( R `  ( S `  F
) )  .<_  ( R `
 F ) ) )
12113ad2ant3 978 . . 3  |-  ( ( S : T --> T  /\  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g ) )  =  ( ( S `  f )  o.  ( S `  g )
)  /\  A. f  e.  T  ( R `  ( S `  f
) )  .<_  ( R `
 f ) )  ->  ( F  e.  T  ->  ( R `  ( S `  F
) )  .<_  ( R `
 F ) ) )
136, 12syl6bi 219 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( S  e.  E  ->  ( F  e.  T  ->  ( R `  ( S `  F )
)  .<_  ( R `  F ) ) ) )
14133imp 1145 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  S  e.  E  /\  F  e.  T
)  ->  ( R `  ( S `  F
) )  .<_  ( R `
 F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   class class class wbr 4039    o. ccom 4709   -->wf 5267   ` cfv 5271   lecple 13231   LHypclh 30795   LTrncltrn 30912   trLctrl 30969   TEndoctendo 31563
This theorem is referenced by:  tendococl  31583  tendoid  31584  tendopltp  31591  tendoicl  31607  cdlemi1  31629  tendotr  31641  cdleml1N  31787  dva1dim  31796  dialss  31858  diblss  31982
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-map 6790  df-tendo 31566
  Copyright terms: Public domain W3C validator