Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendotr Unicode version

Theorem tendotr 31019
Description: The trace of the value of a non-zero trace-preserving endomorphism equals the trace of the argument. (Contributed by NM, 11-Aug-2013.)
Hypotheses
Ref Expression
tendotr.b  |-  B  =  ( Base `  K
)
tendotr.h  |-  H  =  ( LHyp `  K
)
tendotr.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendotr.r  |-  R  =  ( ( trL `  K
) `  W )
tendotr.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendotr.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
tendotr  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/= 
O )  /\  F  e.  T )  ->  ( R `  ( U `  F ) )  =  ( R `  F
) )
Distinct variable groups:    B, f    T, f
Allowed substitution hints:    R( f)    U( f)    E( f)    F( f)    H( f)    K( f)    O( f)    W( f)

Proof of Theorem tendotr
StepHypRef Expression
1 simpl1 958 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =  (  _I  |`  B ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simpl2l 1008 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =  (  _I  |`  B ) )  ->  U  e.  E
)
3 tendotr.b . . . . . 6  |-  B  =  ( Base `  K
)
4 tendotr.h . . . . . 6  |-  H  =  ( LHyp `  K
)
5 tendotr.e . . . . . 6  |-  E  =  ( ( TEndo `  K
) `  W )
63, 4, 5tendoid 30962 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( U `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
71, 2, 6syl2anc 642 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =  (  _I  |`  B ) )  ->  ( U `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
8 simpr 447 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =  (  _I  |`  B ) )  ->  F  =  (  _I  |`  B )
)
98fveq2d 5529 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =  (  _I  |`  B ) )  ->  ( U `  F )  =  ( U `  (  _I  |`  B ) ) )
107, 9, 83eqtr4d 2325 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =  (  _I  |`  B ) )  ->  ( U `  F )  =  F )
1110fveq2d 5529 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =  (  _I  |`  B ) )  ->  ( R `  ( U `  F ) )  =  ( R `
 F ) )
12 simpl1 958 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simpl2l 1008 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  U  e.  E
)
14 simpl3 960 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  F  e.  T
)
15 eqid 2283 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
16 tendotr.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
17 tendotr.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
1815, 4, 16, 17, 5tendotp 30950 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  F  e.  T
)  ->  ( R `  ( U `  F
) ) ( le
`  K ) ( R `  F ) )
1912, 13, 14, 18syl3anc 1182 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  ( U `  F ) ) ( le `  K ) ( R `
 F ) )
20 simpl1l 1006 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  K  e.  HL )
21 hlatl 29550 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
2220, 21syl 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  K  e.  AtLat )
234, 16, 5tendocl 30956 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  F  e.  T
)  ->  ( U `  F )  e.  T
)
2412, 13, 14, 23syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( U `  F )  e.  T
)
25 simpl2r 1009 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  U  =/=  O
)
26 simpr 447 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  F  =/=  (  _I  |`  B ) )
27 tendotr.o . . . . . . . . 9  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
283, 4, 16, 5, 27tendoid0 31014 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  ( ( U `  F )  =  (  _I  |`  B )  <-> 
U  =  O ) )
2912, 13, 14, 26, 28syl112anc 1186 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( ( U `
 F )  =  (  _I  |`  B )  <-> 
U  =  O ) )
3029necon3bid 2481 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( ( U `
 F )  =/=  (  _I  |`  B )  <-> 
U  =/=  O ) )
3125, 30mpbird 223 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( U `  F )  =/=  (  _I  |`  B ) )
32 eqid 2283 . . . . . 6  |-  ( Atoms `  K )  =  (
Atoms `  K )
333, 32, 4, 16, 17trlnidat 30362 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U `  F )  e.  T  /\  ( U `  F
)  =/=  (  _I  |`  B ) )  -> 
( R `  ( U `  F )
)  e.  ( Atoms `  K ) )
3412, 24, 31, 33syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  ( U `  F ) )  e.  ( Atoms `  K ) )
353, 32, 4, 16, 17trlnidat 30362 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  F )  e.  (
Atoms `  K ) )
3612, 14, 26, 35syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  F )  e.  (
Atoms `  K ) )
3715, 32atcmp 29501 . . . 4  |-  ( ( K  e.  AtLat  /\  ( R `  ( U `  F ) )  e.  ( Atoms `  K )  /\  ( R `  F
)  e.  ( Atoms `  K ) )  -> 
( ( R `  ( U `  F ) ) ( le `  K ) ( R `
 F )  <->  ( R `  ( U `  F
) )  =  ( R `  F ) ) )
3822, 34, 36, 37syl3anc 1182 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( ( R `
 ( U `  F ) ) ( le `  K ) ( R `  F
)  <->  ( R `  ( U `  F ) )  =  ( R `
 F ) ) )
3919, 38mpbid 201 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  ( U `  F ) )  =  ( R `
 F ) )
4011, 39pm2.61dane 2524 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/= 
O )  /\  F  e.  T )  ->  ( R `  ( U `  F ) )  =  ( R `  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023    e. cmpt 4077    _I cid 4304    |` cres 4691   ` cfv 5255   Basecbs 13148   lecple 13215   Atomscatm 29453   AtLatcal 29454   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   trLctrl 30347   TEndoctendo 30941
This theorem is referenced by:  cdleml6  31170
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348  df-tendo 30944
  Copyright terms: Public domain W3C validator