MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfinds3 Unicode version

Theorem tfinds3 4671
Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction hypothesis for successors, and the induction hypothesis for limit ordinals. (Contributed by NM, 6-Jan-2005.) (Revised by David Abernethy, 21-Jun-2011.)
Hypotheses
Ref Expression
tfinds3.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
tfinds3.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
tfinds3.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
tfinds3.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
tfinds3.5  |-  ( et 
->  ps )
tfinds3.6  |-  ( y  e.  On  ->  ( et  ->  ( ch  ->  th ) ) )
tfinds3.7  |-  ( Lim  x  ->  ( et  ->  ( A. y  e.  x  ch  ->  ph )
) )
Assertion
Ref Expression
tfinds3  |-  ( A  e.  On  ->  ( et  ->  ta ) )
Distinct variable groups:    x, A    ph, y    ch, x    ta, x    x, y, et
Allowed substitution hints:    ph( x)    ps( x, y)    ch( y)    th( x, y)    ta( y)    A( y)

Proof of Theorem tfinds3
StepHypRef Expression
1 tfinds3.1 . . 3  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
21imbi2d 307 . 2  |-  ( x  =  (/)  ->  ( ( et  ->  ph )  <->  ( et  ->  ps ) ) )
3 tfinds3.2 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
43imbi2d 307 . 2  |-  ( x  =  y  ->  (
( et  ->  ph )  <->  ( et  ->  ch )
) )
5 tfinds3.3 . . 3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
65imbi2d 307 . 2  |-  ( x  =  suc  y  -> 
( ( et  ->  ph )  <->  ( et  ->  th ) ) )
7 tfinds3.4 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
87imbi2d 307 . 2  |-  ( x  =  A  ->  (
( et  ->  ph )  <->  ( et  ->  ta )
) )
9 tfinds3.5 . 2  |-  ( et 
->  ps )
10 tfinds3.6 . . 3  |-  ( y  e.  On  ->  ( et  ->  ( ch  ->  th ) ) )
1110a2d 23 . 2  |-  ( y  e.  On  ->  (
( et  ->  ch )  ->  ( et  ->  th ) ) )
12 r19.21v 2643 . . 3  |-  ( A. y  e.  x  ( et  ->  ch )  <->  ( et  ->  A. y  e.  x  ch ) )
13 tfinds3.7 . . . 4  |-  ( Lim  x  ->  ( et  ->  ( A. y  e.  x  ch  ->  ph )
) )
1413a2d 23 . . 3  |-  ( Lim  x  ->  ( ( et  ->  A. y  e.  x  ch )  ->  ( et 
->  ph ) ) )
1512, 14syl5bi 208 . 2  |-  ( Lim  x  ->  ( A. y  e.  x  ( et  ->  ch )  -> 
( et  ->  ph )
) )
162, 4, 6, 8, 9, 11, 15tfinds 4666 1  |-  ( A  e.  On  ->  ( et  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632    e. wcel 1696   A.wral 2556   (/)c0 3468   Oncon0 4408   Lim wlim 4409   suc csuc 4410
This theorem is referenced by:  oacl  6550  omcl  6551  oecl  6552  oawordri  6564  oaass  6575  oarec  6576  omordi  6580  omwordri  6586  odi  6593  omass  6594  oen0  6600  oewordri  6606  oeworde  6607  oeoelem  6612  omabs  6661
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414
  Copyright terms: Public domain W3C validator