MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfindsg2 Unicode version

Theorem tfindsg2 4689
Description: Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction hypothesis for successors, and the induction hypothesis for limit ordinals. The basis of this version is an arbitrary ordinal  suc  B instead of zero. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 5-Jan-2005.)
Hypotheses
Ref Expression
tfindsg2.1  |-  ( x  =  suc  B  -> 
( ph  <->  ps ) )
tfindsg2.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
tfindsg2.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
tfindsg2.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
tfindsg2.5  |-  ( B  e.  On  ->  ps )
tfindsg2.6  |-  ( ( y  e.  On  /\  B  e.  y )  ->  ( ch  ->  th )
)
tfindsg2.7  |-  ( ( Lim  x  /\  B  e.  x )  ->  ( A. y  e.  x  ( B  e.  y  ->  ch )  ->  ph )
)
Assertion
Ref Expression
tfindsg2  |-  ( ( A  e.  On  /\  B  e.  A )  ->  ta )
Distinct variable groups:    x, A    x, y, B    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem tfindsg2
StepHypRef Expression
1 onelon 4454 . . 3  |-  ( ( A  e.  On  /\  B  e.  A )  ->  B  e.  On )
2 sucelon 4645 . . 3  |-  ( B  e.  On  <->  suc  B  e.  On )
31, 2sylib 188 . 2  |-  ( ( A  e.  On  /\  B  e.  A )  ->  suc  B  e.  On )
4 eloni 4439 . . . 4  |-  ( A  e.  On  ->  Ord  A )
5 ordsucss 4646 . . . 4  |-  ( Ord 
A  ->  ( B  e.  A  ->  suc  B  C_  A ) )
64, 5syl 15 . . 3  |-  ( A  e.  On  ->  ( B  e.  A  ->  suc 
B  C_  A )
)
76imp 418 . 2  |-  ( ( A  e.  On  /\  B  e.  A )  ->  suc  B  C_  A
)
8 tfindsg2.1 . . . . 5  |-  ( x  =  suc  B  -> 
( ph  <->  ps ) )
9 tfindsg2.2 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
10 tfindsg2.3 . . . . 5  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
11 tfindsg2.4 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
12 tfindsg2.5 . . . . . 6  |-  ( B  e.  On  ->  ps )
132, 12sylbir 204 . . . . 5  |-  ( suc 
B  e.  On  ->  ps )
14 eloni 4439 . . . . . . . . . 10  |-  ( y  e.  On  ->  Ord  y )
15 ordelsuc 4648 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  Ord  y )  ->  ( B  e.  y  <->  suc  B  C_  y ) )
1614, 15sylan2 460 . . . . . . . . 9  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  e.  y  <->  suc  B  C_  y )
)
1716ancoms 439 . . . . . . . 8  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( B  e.  y  <->  suc  B  C_  y )
)
18 tfindsg2.6 . . . . . . . . . 10  |-  ( ( y  e.  On  /\  B  e.  y )  ->  ( ch  ->  th )
)
1918ex 423 . . . . . . . . 9  |-  ( y  e.  On  ->  ( B  e.  y  ->  ( ch  ->  th )
) )
2019adantr 451 . . . . . . . 8  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( B  e.  y  ->  ( ch  ->  th ) ) )
2117, 20sylbird 226 . . . . . . 7  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( suc  B  C_  y  ->  ( ch  ->  th ) ) )
222, 21sylan2br 462 . . . . . 6  |-  ( ( y  e.  On  /\  suc  B  e.  On )  ->  ( suc  B  C_  y  ->  ( ch  ->  th ) ) )
2322imp 418 . . . . 5  |-  ( ( ( y  e.  On  /\ 
suc  B  e.  On )  /\  suc  B  C_  y )  ->  ( ch  ->  th ) )
24 tfindsg2.7 . . . . . . . . . 10  |-  ( ( Lim  x  /\  B  e.  x )  ->  ( A. y  e.  x  ( B  e.  y  ->  ch )  ->  ph )
)
2524ex 423 . . . . . . . . 9  |-  ( Lim  x  ->  ( B  e.  x  ->  ( A. y  e.  x  ( B  e.  y  ->  ch )  ->  ph ) ) )
2625adantr 451 . . . . . . . 8  |-  ( ( Lim  x  /\  B  e.  On )  ->  ( B  e.  x  ->  ( A. y  e.  x  ( B  e.  y  ->  ch )  ->  ph )
) )
27 vex 2825 . . . . . . . . . . 11  |-  x  e. 
_V
28 limelon 4492 . . . . . . . . . . 11  |-  ( ( x  e.  _V  /\  Lim  x )  ->  x  e.  On )
2927, 28mpan 651 . . . . . . . . . 10  |-  ( Lim  x  ->  x  e.  On )
30 eloni 4439 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  Ord  x )
31 ordelsuc 4648 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  Ord  x )  ->  ( B  e.  x  <->  suc  B  C_  x ) )
3230, 31sylan2 460 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  x  e.  On )  ->  ( B  e.  x  <->  suc 
B  C_  x )
)
33 onelon 4454 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  e.  On )
3433, 14syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  On  /\  y  e.  x )  ->  Ord  y )
3534, 15sylan2 460 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  On  /\  ( x  e.  On  /\  y  e.  x ) )  ->  ( B  e.  y  <->  suc  B  C_  y
) )
3635anassrs 629 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  On  /\  x  e.  On )  /\  y  e.  x
)  ->  ( B  e.  y  <->  suc  B  C_  y
) )
3736imbi1d 308 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  On  /\  x  e.  On )  /\  y  e.  x
)  ->  ( ( B  e.  y  ->  ch )  <->  ( suc  B  C_  y  ->  ch )
) )
3837ralbidva 2593 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  x  e.  On )  ->  ( A. y  e.  x  ( B  e.  y  ->  ch )  <->  A. y  e.  x  ( suc  B  C_  y  ->  ch ) ) )
3938imbi1d 308 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  x  e.  On )  ->  ( ( A. y  e.  x  ( B  e.  y  ->  ch )  ->  ph )  <->  ( A. y  e.  x  ( suc  B  C_  y  ->  ch )  ->  ph ) ) )
4032, 39imbi12d 311 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  x  e.  On )  ->  ( ( B  e.  x  ->  ( A. y  e.  x  ( B  e.  y  ->  ch )  ->  ph ) )  <-> 
( suc  B  C_  x  ->  ( A. y  e.  x  ( suc  B  C_  y  ->  ch )  ->  ph ) ) ) )
4129, 40sylan2 460 . . . . . . . . 9  |-  ( ( B  e.  On  /\  Lim  x )  ->  (
( B  e.  x  ->  ( A. y  e.  x  ( B  e.  y  ->  ch )  ->  ph ) )  <->  ( suc  B 
C_  x  ->  ( A. y  e.  x  ( suc  B  C_  y  ->  ch )  ->  ph )
) ) )
4241ancoms 439 . . . . . . . 8  |-  ( ( Lim  x  /\  B  e.  On )  ->  (
( B  e.  x  ->  ( A. y  e.  x  ( B  e.  y  ->  ch )  ->  ph ) )  <->  ( suc  B 
C_  x  ->  ( A. y  e.  x  ( suc  B  C_  y  ->  ch )  ->  ph )
) ) )
4326, 42mpbid 201 . . . . . . 7  |-  ( ( Lim  x  /\  B  e.  On )  ->  ( suc  B  C_  x  ->  ( A. y  e.  x  ( suc  B  C_  y  ->  ch )  ->  ph )
) )
442, 43sylan2br 462 . . . . . 6  |-  ( ( Lim  x  /\  suc  B  e.  On )  -> 
( suc  B  C_  x  ->  ( A. y  e.  x  ( suc  B  C_  y  ->  ch )  ->  ph ) ) )
4544imp 418 . . . . 5  |-  ( ( ( Lim  x  /\  suc  B  e.  On )  /\  suc  B  C_  x )  ->  ( A. y  e.  x  ( suc  B  C_  y  ->  ch )  ->  ph )
)
468, 9, 10, 11, 13, 23, 45tfindsg 4688 . . . 4  |-  ( ( ( A  e.  On  /\ 
suc  B  e.  On )  /\  suc  B  C_  A )  ->  ta )
4746expl 601 . . 3  |-  ( A  e.  On  ->  (
( suc  B  e.  On  /\  suc  B  C_  A )  ->  ta ) )
4847adantr 451 . 2  |-  ( ( A  e.  On  /\  B  e.  A )  ->  ( ( suc  B  e.  On  /\  suc  B  C_  A )  ->  ta ) )
493, 7, 48mp2and 660 1  |-  ( ( A  e.  On  /\  B  e.  A )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1633    e. wcel 1701   A.wral 2577   _Vcvv 2822    C_ wss 3186   Ord word 4428   Oncon0 4429   Lim wlim 4430   suc csuc 4431
This theorem is referenced by:  oeordi  6627
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-sbc 3026  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-br 4061  df-opab 4115  df-tr 4151  df-eprel 4342  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435
  Copyright terms: Public domain W3C validator