MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfindsg2 Unicode version

Theorem tfindsg2 4652
Description: Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction hypothesis for successors, and the induction hypothesis for limit ordinals. The basis of this version is an arbitrary ordinal  suc  B instead of zero. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 5-Jan-2005.)
Hypotheses
Ref Expression
tfindsg2.1  |-  ( x  =  suc  B  -> 
( ph  <->  ps ) )
tfindsg2.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
tfindsg2.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
tfindsg2.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
tfindsg2.5  |-  ( B  e.  On  ->  ps )
tfindsg2.6  |-  ( ( y  e.  On  /\  B  e.  y )  ->  ( ch  ->  th )
)
tfindsg2.7  |-  ( ( Lim  x  /\  B  e.  x )  ->  ( A. y  e.  x  ( B  e.  y  ->  ch )  ->  ph )
)
Assertion
Ref Expression
tfindsg2  |-  ( ( A  e.  On  /\  B  e.  A )  ->  ta )
Distinct variable groups:    x, A    x, y, B    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem tfindsg2
StepHypRef Expression
1 onelon 4417 . . 3  |-  ( ( A  e.  On  /\  B  e.  A )  ->  B  e.  On )
2 sucelon 4608 . . 3  |-  ( B  e.  On  <->  suc  B  e.  On )
31, 2sylib 188 . 2  |-  ( ( A  e.  On  /\  B  e.  A )  ->  suc  B  e.  On )
4 eloni 4402 . . . 4  |-  ( A  e.  On  ->  Ord  A )
5 ordsucss 4609 . . . 4  |-  ( Ord 
A  ->  ( B  e.  A  ->  suc  B  C_  A ) )
64, 5syl 15 . . 3  |-  ( A  e.  On  ->  ( B  e.  A  ->  suc 
B  C_  A )
)
76imp 418 . 2  |-  ( ( A  e.  On  /\  B  e.  A )  ->  suc  B  C_  A
)
8 tfindsg2.1 . . . . 5  |-  ( x  =  suc  B  -> 
( ph  <->  ps ) )
9 tfindsg2.2 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
10 tfindsg2.3 . . . . 5  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
11 tfindsg2.4 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
12 tfindsg2.5 . . . . . 6  |-  ( B  e.  On  ->  ps )
132, 12sylbir 204 . . . . 5  |-  ( suc 
B  e.  On  ->  ps )
14 eloni 4402 . . . . . . . . . 10  |-  ( y  e.  On  ->  Ord  y )
15 ordelsuc 4611 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  Ord  y )  ->  ( B  e.  y  <->  suc  B  C_  y ) )
1614, 15sylan2 460 . . . . . . . . 9  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  e.  y  <->  suc  B  C_  y )
)
1716ancoms 439 . . . . . . . 8  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( B  e.  y  <->  suc  B  C_  y )
)
18 tfindsg2.6 . . . . . . . . . 10  |-  ( ( y  e.  On  /\  B  e.  y )  ->  ( ch  ->  th )
)
1918ex 423 . . . . . . . . 9  |-  ( y  e.  On  ->  ( B  e.  y  ->  ( ch  ->  th )
) )
2019adantr 451 . . . . . . . 8  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( B  e.  y  ->  ( ch  ->  th ) ) )
2117, 20sylbird 226 . . . . . . 7  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( suc  B  C_  y  ->  ( ch  ->  th ) ) )
222, 21sylan2br 462 . . . . . 6  |-  ( ( y  e.  On  /\  suc  B  e.  On )  ->  ( suc  B  C_  y  ->  ( ch  ->  th ) ) )
2322imp 418 . . . . 5  |-  ( ( ( y  e.  On  /\ 
suc  B  e.  On )  /\  suc  B  C_  y )  ->  ( ch  ->  th ) )
24 tfindsg2.7 . . . . . . . . . 10  |-  ( ( Lim  x  /\  B  e.  x )  ->  ( A. y  e.  x  ( B  e.  y  ->  ch )  ->  ph )
)
2524ex 423 . . . . . . . . 9  |-  ( Lim  x  ->  ( B  e.  x  ->  ( A. y  e.  x  ( B  e.  y  ->  ch )  ->  ph ) ) )
2625adantr 451 . . . . . . . 8  |-  ( ( Lim  x  /\  B  e.  On )  ->  ( B  e.  x  ->  ( A. y  e.  x  ( B  e.  y  ->  ch )  ->  ph )
) )
27 vex 2791 . . . . . . . . . . 11  |-  x  e. 
_V
28 limelon 4455 . . . . . . . . . . 11  |-  ( ( x  e.  _V  /\  Lim  x )  ->  x  e.  On )
2927, 28mpan 651 . . . . . . . . . 10  |-  ( Lim  x  ->  x  e.  On )
30 eloni 4402 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  Ord  x )
31 ordelsuc 4611 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  Ord  x )  ->  ( B  e.  x  <->  suc  B  C_  x ) )
3230, 31sylan2 460 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  x  e.  On )  ->  ( B  e.  x  <->  suc 
B  C_  x )
)
33 onelon 4417 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  e.  On )
3433, 14syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  On  /\  y  e.  x )  ->  Ord  y )
3534, 15sylan2 460 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  On  /\  ( x  e.  On  /\  y  e.  x ) )  ->  ( B  e.  y  <->  suc  B  C_  y
) )
3635anassrs 629 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  On  /\  x  e.  On )  /\  y  e.  x
)  ->  ( B  e.  y  <->  suc  B  C_  y
) )
3736imbi1d 308 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  On  /\  x  e.  On )  /\  y  e.  x
)  ->  ( ( B  e.  y  ->  ch )  <->  ( suc  B  C_  y  ->  ch )
) )
3837ralbidva 2559 . . . . . . . . . . . 12  |-  ( ( B  e.  On  /\  x  e.  On )  ->  ( A. y  e.  x  ( B  e.  y  ->  ch )  <->  A. y  e.  x  ( suc  B  C_  y  ->  ch ) ) )
3938imbi1d 308 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  x  e.  On )  ->  ( ( A. y  e.  x  ( B  e.  y  ->  ch )  ->  ph )  <->  ( A. y  e.  x  ( suc  B  C_  y  ->  ch )  ->  ph ) ) )
4032, 39imbi12d 311 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  x  e.  On )  ->  ( ( B  e.  x  ->  ( A. y  e.  x  ( B  e.  y  ->  ch )  ->  ph ) )  <-> 
( suc  B  C_  x  ->  ( A. y  e.  x  ( suc  B  C_  y  ->  ch )  ->  ph ) ) ) )
4129, 40sylan2 460 . . . . . . . . 9  |-  ( ( B  e.  On  /\  Lim  x )  ->  (
( B  e.  x  ->  ( A. y  e.  x  ( B  e.  y  ->  ch )  ->  ph ) )  <->  ( suc  B 
C_  x  ->  ( A. y  e.  x  ( suc  B  C_  y  ->  ch )  ->  ph )
) ) )
4241ancoms 439 . . . . . . . 8  |-  ( ( Lim  x  /\  B  e.  On )  ->  (
( B  e.  x  ->  ( A. y  e.  x  ( B  e.  y  ->  ch )  ->  ph ) )  <->  ( suc  B 
C_  x  ->  ( A. y  e.  x  ( suc  B  C_  y  ->  ch )  ->  ph )
) ) )
4326, 42mpbid 201 . . . . . . 7  |-  ( ( Lim  x  /\  B  e.  On )  ->  ( suc  B  C_  x  ->  ( A. y  e.  x  ( suc  B  C_  y  ->  ch )  ->  ph )
) )
442, 43sylan2br 462 . . . . . 6  |-  ( ( Lim  x  /\  suc  B  e.  On )  -> 
( suc  B  C_  x  ->  ( A. y  e.  x  ( suc  B  C_  y  ->  ch )  ->  ph ) ) )
4544imp 418 . . . . 5  |-  ( ( ( Lim  x  /\  suc  B  e.  On )  /\  suc  B  C_  x )  ->  ( A. y  e.  x  ( suc  B  C_  y  ->  ch )  ->  ph )
)
468, 9, 10, 11, 13, 23, 45tfindsg 4651 . . . 4  |-  ( ( ( A  e.  On  /\ 
suc  B  e.  On )  /\  suc  B  C_  A )  ->  ta )
4746expl 601 . . 3  |-  ( A  e.  On  ->  (
( suc  B  e.  On  /\  suc  B  C_  A )  ->  ta ) )
4847adantr 451 . 2  |-  ( ( A  e.  On  /\  B  e.  A )  ->  ( ( suc  B  e.  On  /\  suc  B  C_  A )  ->  ta ) )
493, 7, 48mp2and 660 1  |-  ( ( A  e.  On  /\  B  e.  A )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    C_ wss 3152   Ord word 4391   Oncon0 4392   Lim wlim 4393   suc csuc 4394
This theorem is referenced by:  oeordi  6585
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398
  Copyright terms: Public domain W3C validator