MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr2 Unicode version

Theorem tfr2 6414
Description: Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47. Here we show that the function  F has the property that for any function  G whatsoever, the "next" value of  F is  G recursively applied to all "previous" values of  F. (Contributed by NM, 9-Apr-1995.) (Revised by Stefan O'Rear, 18-Jan-2015.)
Hypothesis
Ref Expression
tfr.1  |-  F  = recs ( G )
Assertion
Ref Expression
tfr2  |-  ( A  e.  On  ->  ( F `  A )  =  ( G `  ( F  |`  A ) ) )

Proof of Theorem tfr2
StepHypRef Expression
1 tfr.1 . . . . 5  |-  F  = recs ( G )
21tfr1 6413 . . . 4  |-  F  Fn  On
3 fndm 5343 . . . 4  |-  ( F  Fn  On  ->  dom  F  =  On )
42, 3ax-mp 8 . . 3  |-  dom  F  =  On
54eleq2i 2347 . 2  |-  ( A  e.  dom  F  <->  A  e.  On )
61tfr2a 6411 . 2  |-  ( A  e.  dom  F  -> 
( F `  A
)  =  ( G `
 ( F  |`  A ) ) )
75, 6sylbir 204 1  |-  ( A  e.  On  ->  ( F `  A )  =  ( G `  ( F  |`  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   Oncon0 4392   dom cdm 4689    |` cres 4691    Fn wfn 5250   ` cfv 5255  recscrecs 6387
This theorem is referenced by:  tfr3  6415  recsval  6417  rdgval  6433  dfac8alem  7656  dfac12lem1  7769  zorn2lem1  8123  ttukeylem3  8138
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388
  Copyright terms: Public domain W3C validator