MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr3 Structured version   Unicode version

Theorem tfr3 6662
Description: Principle of Transfinite Recursion, part 3 of 3. Theorem 7.41(3) of [TakeutiZaring] p. 47. Finally, we show that  F is unique. We do this by showing that any class  B with the same properties of  F that we showed in parts 1 and 2 is identical to  F. (Contributed by NM, 18-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfr.1  |-  F  = recs ( G )
Assertion
Ref Expression
tfr3  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  B  =  F )
Distinct variable groups:    x, B    x, F    x, G

Proof of Theorem tfr3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1630 . . . 4  |-  F/ x  B  Fn  On
2 nfra1 2758 . . . 4  |-  F/ x A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )
31, 2nfan 1847 . . 3  |-  F/ x
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )
4 nfv 1630 . . . . . 6  |-  F/ x
( B `  y
)  =  ( F `
 y )
53, 4nfim 1833 . . . . 5  |-  F/ x
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) )
6 fveq2 5730 . . . . . . 7  |-  ( x  =  y  ->  ( B `  x )  =  ( B `  y ) )
7 fveq2 5730 . . . . . . 7  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
86, 7eqeq12d 2452 . . . . . 6  |-  ( x  =  y  ->  (
( B `  x
)  =  ( F `
 x )  <->  ( B `  y )  =  ( F `  y ) ) )
98imbi2d 309 . . . . 5  |-  ( x  =  y  ->  (
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) )  <->  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) ) ) )
10 r19.21v 2795 . . . . . 6  |-  ( A. y  e.  x  (
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) )  <->  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  A. y  e.  x  ( B `  y )  =  ( F `  y ) ) )
11 rsp 2768 . . . . . . . . . 10  |-  ( A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )  ->  ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) ) )
12 onss 4773 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  On  ->  x  C_  On )
13 tfr.1 . . . . . . . . . . . . . . . . . . . . . 22  |-  F  = recs ( G )
1413tfr1 6660 . . . . . . . . . . . . . . . . . . . . 21  |-  F  Fn  On
15 fvreseq 5835 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( B  Fn  On  /\  F  Fn  On )  /\  x  C_  On )  ->  ( ( B  |`  x )  =  ( F  |`  x )  <->  A. y  e.  x  ( B `  y )  =  ( F `  y ) ) )
1614, 15mpanl2 664 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  Fn  On  /\  x  C_  On )  -> 
( ( B  |`  x )  =  ( F  |`  x )  <->  A. y  e.  x  ( B `  y )  =  ( F `  y ) ) )
17 fveq2 5730 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  |`  x )  =  ( F  |`  x )  ->  ( G `  ( B  |`  x ) )  =  ( G `  ( F  |`  x ) ) )
1816, 17syl6bir 222 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  Fn  On  /\  x  C_  On )  -> 
( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
1912, 18sylan2 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  Fn  On  /\  x  e.  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
2019ancoms 441 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  /\  B  Fn  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
2120imp 420 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  ->  ( G `  ( B  |`  x
) )  =  ( G `  ( F  |`  x ) ) )
2221adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  /\  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  x  e.  On ) )  -> 
( G `  ( B  |`  x ) )  =  ( G `  ( F  |`  x ) ) )
2313tfr2 6661 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) )
2423jctr 528 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
( x  e.  On  ->  ( B `  x
)  =  ( G `
 ( B  |`  x ) ) )  /\  ( x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) ) )
25 jcab 835 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  On  ->  ( ( B `  x
)  =  ( G `
 ( B  |`  x ) )  /\  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) )  <->  ( (
x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  (
x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) ) )
2624, 25sylibr 205 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( ( B `  x
)  =  ( G `
 ( B  |`  x ) )  /\  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) ) )
27 eqeq12 2450 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B `  x
)  =  ( G `
 ( B  |`  x ) )  /\  ( F `  x )  =  ( G `  ( F  |`  x ) ) )  ->  (
( B `  x
)  =  ( F `
 x )  <->  ( G `  ( B  |`  x
) )  =  ( G `  ( F  |`  x ) ) ) )
2826, 27syl6 32 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( ( B `  x
)  =  ( F `
 x )  <->  ( G `  ( B  |`  x
) )  =  ( G `  ( F  |`  x ) ) ) ) )
2928imp 420 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  ->  ( B `  x
)  =  ( G `
 ( B  |`  x ) ) )  /\  x  e.  On )  ->  ( ( B `
 x )  =  ( F `  x
)  <->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
3029adantl 454 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  /\  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  x  e.  On ) )  -> 
( ( B `  x )  =  ( F `  x )  <-> 
( G `  ( B  |`  x ) )  =  ( G `  ( F  |`  x ) ) ) )
3122, 30mpbird 225 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  /\  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  x  e.  On ) )  -> 
( B `  x
)  =  ( F `
 x ) )
3231exp43 597 . . . . . . . . . . . . 13  |-  ( ( x  e.  On  /\  B  Fn  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3332com4t 82 . . . . . . . . . . . 12  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( ( x  e.  On  /\  B  Fn  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3433exp4a 591 . . . . . . . . . . 11  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( x  e.  On  ->  ( B  Fn  On  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) ) )
3534pm2.43d 47 . . . . . . . . . 10  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( B  Fn  On  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3611, 35syl 16 . . . . . . . . 9  |-  ( A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )  ->  ( x  e.  On  ->  ( B  Fn  On  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3736com3l 78 . . . . . . . 8  |-  ( x  e.  On  ->  ( B  Fn  On  ->  ( A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3837imp3a 422 . . . . . . 7  |-  ( x  e.  On  ->  (
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) )
3938a2d 25 . . . . . 6  |-  ( x  e.  On  ->  (
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  -> 
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) ) ) )
4010, 39syl5bi 210 . . . . 5  |-  ( x  e.  On  ->  ( A. y  e.  x  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) )  ->  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) ) ) )
415, 9, 40tfis2f 4837 . . . 4  |-  ( x  e.  On  ->  (
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) ) )
4241com12 30 . . 3  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( B `  x )  =  ( F `  x ) ) )
433, 42ralrimi 2789 . 2  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  A. x  e.  On  ( B `  x )  =  ( F `  x ) )
44 eqfnfv 5829 . . . 4  |-  ( ( B  Fn  On  /\  F  Fn  On )  ->  ( B  =  F  <->  A. x  e.  On  ( B `  x )  =  ( F `  x ) ) )
4514, 44mpan2 654 . . 3  |-  ( B  Fn  On  ->  ( B  =  F  <->  A. x  e.  On  ( B `  x )  =  ( F `  x ) ) )
4645biimpar 473 . 2  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( F `  x ) )  ->  B  =  F )
4743, 46syldan 458 1  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  B  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707    C_ wss 3322   Oncon0 4583    |` cres 4882    Fn wfn 5451   ` cfv 5456  recscrecs 6634
This theorem is referenced by:  tfrALTlem  25559
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-suc 4589  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-recs 6635
  Copyright terms: Public domain W3C validator