MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem7 Unicode version

Theorem tfrlem7 6486
Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem7  |-  Fun recs ( F )
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem7
Dummy variables  g  h  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . 3  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem6 6485 . 2  |-  Rel recs ( F )
31recsfval 6484 . . . . . . . . 9  |- recs ( F )  =  U. A
43eleq2i 2422 . . . . . . . 8  |-  ( <.
x ,  u >.  e. recs
( F )  <->  <. x ,  u >.  e.  U. A
)
5 eluni 3911 . . . . . . . 8  |-  ( <.
x ,  u >.  e. 
U. A  <->  E. g
( <. x ,  u >.  e.  g  /\  g  e.  A ) )
64, 5bitri 240 . . . . . . 7  |-  ( <.
x ,  u >.  e. recs
( F )  <->  E. g
( <. x ,  u >.  e.  g  /\  g  e.  A ) )
73eleq2i 2422 . . . . . . . 8  |-  ( <.
x ,  v >.  e. recs ( F )  <->  <. x ,  v >.  e.  U. A
)
8 eluni 3911 . . . . . . . 8  |-  ( <.
x ,  v >.  e.  U. A  <->  E. h
( <. x ,  v
>.  e.  h  /\  h  e.  A ) )
97, 8bitri 240 . . . . . . 7  |-  ( <.
x ,  v >.  e. recs ( F )  <->  E. h
( <. x ,  v
>.  e.  h  /\  h  e.  A ) )
106, 9anbi12i 678 . . . . . 6  |-  ( (
<. x ,  u >.  e. recs
( F )  /\  <.
x ,  v >.  e. recs ( F ) )  <-> 
( E. g (
<. x ,  u >.  e.  g  /\  g  e.  A )  /\  E. h ( <. x ,  v >.  e.  h  /\  h  e.  A
) ) )
11 eeanv 1918 . . . . . 6  |-  ( E. g E. h ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  <->  ( E. g ( <. x ,  u >.  e.  g  /\  g  e.  A
)  /\  E. h
( <. x ,  v
>.  e.  h  /\  h  e.  A ) ) )
1210, 11bitr4i 243 . . . . 5  |-  ( (
<. x ,  u >.  e. recs
( F )  /\  <.
x ,  v >.  e. recs ( F ) )  <->  E. g E. h ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) ) )
13 an4 797 . . . . . . . 8  |-  ( ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  <->  ( ( <. x ,  u >.  e.  g  /\  <. x ,  v >.  e.  h
)  /\  ( g  e.  A  /\  h  e.  A ) ) )
14 ancom 437 . . . . . . . 8  |-  ( ( ( <. x ,  u >.  e.  g  /\  <. x ,  v >.  e.  h
)  /\  ( g  e.  A  /\  h  e.  A ) )  <->  ( (
g  e.  A  /\  h  e.  A )  /\  ( <. x ,  u >.  e.  g  /\  <. x ,  v >.  e.  h
) ) )
1513, 14bitri 240 . . . . . . 7  |-  ( ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  <->  ( (
g  e.  A  /\  h  e.  A )  /\  ( <. x ,  u >.  e.  g  /\  <. x ,  v >.  e.  h
) ) )
161tfrlem5 6483 . . . . . . . 8  |-  ( ( g  e.  A  /\  h  e.  A )  ->  ( ( <. x ,  u >.  e.  g  /\  <. x ,  v
>.  e.  h )  ->  u  =  v )
)
1716imp 418 . . . . . . 7  |-  ( ( ( g  e.  A  /\  h  e.  A
)  /\  ( <. x ,  u >.  e.  g  /\  <. x ,  v
>.  e.  h ) )  ->  u  =  v )
1815, 17sylbi 187 . . . . . 6  |-  ( ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  ->  u  =  v )
1918exlimivv 1635 . . . . 5  |-  ( E. g E. h ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  ->  u  =  v )
2012, 19sylbi 187 . . . 4  |-  ( (
<. x ,  u >.  e. recs
( F )  /\  <.
x ,  v >.  e. recs ( F ) )  ->  u  =  v )
2120ax-gen 1546 . . 3  |-  A. v
( ( <. x ,  u >.  e. recs ( F )  /\  <. x ,  v >.  e. recs ( F ) )  ->  u  =  v )
2221gen2 1547 . 2  |-  A. x A. u A. v ( ( <. x ,  u >.  e. recs ( F )  /\  <. x ,  v
>.  e. recs ( F ) )  ->  u  =  v )
23 dffun4 5349 . 2  |-  ( Fun recs
( F )  <->  ( Rel recs ( F )  /\  A. x A. u A. v
( ( <. x ,  u >.  e. recs ( F )  /\  <. x ,  v >.  e. recs ( F ) )  ->  u  =  v )
) )
242, 22, 23mpbir2an 886 1  |-  Fun recs ( F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1540   E.wex 1541    = wceq 1642    e. wcel 1710   {cab 2344   A.wral 2619   E.wrex 2620   <.cop 3719   U.cuni 3908   Oncon0 4474    |` cres 4773   Rel wrel 4776   Fun wfun 5331    Fn wfn 5332   ` cfv 5337  recscrecs 6474
This theorem is referenced by:  tfrlem9  6488  tfrlem9a  6489  tfrlem10  6490  tfrlem14  6494  tfrlem16  6496  tfr1a  6497  tfr1  6500
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-fv 5345  df-recs 6475
  Copyright terms: Public domain W3C validator