MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tg2 Unicode version

Theorem tg2 16703
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.)
Assertion
Ref Expression
tg2  |-  ( ( A  e.  ( topGen `  B )  /\  C  e.  A )  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem tg2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elfvdm 5554 . . 3  |-  ( A  e.  ( topGen `  B
)  ->  B  e.  dom  topGen )
2 eltg2b 16697 . . . 4  |-  ( B  e.  dom  topGen  ->  ( A  e.  ( topGen `  B )  <->  A. y  e.  A  E. x  e.  B  ( y  e.  x  /\  x  C_  A ) ) )
3 eleq1 2343 . . . . . . 7  |-  ( y  =  C  ->  (
y  e.  x  <->  C  e.  x ) )
43anbi1d 685 . . . . . 6  |-  ( y  =  C  ->  (
( y  e.  x  /\  x  C_  A )  <-> 
( C  e.  x  /\  x  C_  A ) ) )
54rexbidv 2564 . . . . 5  |-  ( y  =  C  ->  ( E. x  e.  B  ( y  e.  x  /\  x  C_  A )  <->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) ) )
65rspccv 2881 . . . 4  |-  ( A. y  e.  A  E. x  e.  B  (
y  e.  x  /\  x  C_  A )  -> 
( C  e.  A  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) ) )
72, 6syl6bi 219 . . 3  |-  ( B  e.  dom  topGen  ->  ( A  e.  ( topGen `  B )  ->  ( C  e.  A  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) ) ) )
81, 7mpcom 32 . 2  |-  ( A  e.  ( topGen `  B
)  ->  ( C  e.  A  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) ) )
98imp 418 1  |-  ( ( A  e.  ( topGen `  B )  /\  C  e.  A )  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   dom cdm 4689   ` cfv 5255   topGenctg 13342
This theorem is referenced by:  tgclb  16708  elcls3  16820  pnfnei  16950  mnfnei  16951  tgcnp  16983  tgcmp  17128  2ndcctbss  17181  2ndcdisj  17182  2ndcomap  17184  dis2ndc  17186  ptpjopn  17306  txlm  17342  flftg  17691  alexsublem  17738  alexsubALT  17745  tmdgsum2  17779  xrge0tsms  18339  xrge0tsmsd  23382  iccllyscon  23781  rellyscon  23782  fnessex  26275
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-topgen 13344
  Copyright terms: Public domain W3C validator