MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcl Unicode version

Theorem tgcl 16707
Description: Show that a basis generates a topology. Remark in [Munkres] p. 79. (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
tgcl  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )

Proof of Theorem tgcl
Dummy variables  x  y  z  u  t 
v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 3848 . . . . . . . 8  |-  ( u 
C_  ( topGen `  B
)  ->  U. u  C_ 
U. ( topGen `  B
) )
21adantl 452 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B )
)  ->  U. u  C_ 
U. ( topGen `  B
) )
3 unitg 16705 . . . . . . . 8  |-  ( B  e.  TopBases  ->  U. ( topGen `  B
)  =  U. B
)
43adantr 451 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B )
)  ->  U. ( topGen `
 B )  = 
U. B )
52, 4sseqtrd 3214 . . . . . 6  |-  ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B )
)  ->  U. u  C_ 
U. B )
6 eluni2 3831 . . . . . . . 8  |-  ( x  e.  U. u  <->  E. t  e.  u  x  e.  t )
7 ssel2 3175 . . . . . . . . . . . . 13  |-  ( ( u  C_  ( topGen `  B )  /\  t  e.  u )  ->  t  e.  ( topGen `  B )
)
8 eltg2b 16697 . . . . . . . . . . . . . . . 16  |-  ( B  e.  TopBases  ->  ( t  e.  ( topGen `  B )  <->  A. x  e.  t  E. y  e.  B  (
x  e.  y  /\  y  C_  t ) ) )
9 rsp 2603 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  t  E. y  e.  B  (
x  e.  y  /\  y  C_  t )  -> 
( x  e.  t  ->  E. y  e.  B  ( x  e.  y  /\  y  C_  t ) ) )
108, 9syl6bi 219 . . . . . . . . . . . . . . 15  |-  ( B  e.  TopBases  ->  ( t  e.  ( topGen `  B )  ->  ( x  e.  t  ->  E. y  e.  B  ( x  e.  y  /\  y  C_  t ) ) ) )
1110imp31 421 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  TopBases  /\  t  e.  ( topGen `  B ) )  /\  x  e.  t )  ->  E. y  e.  B  ( x  e.  y  /\  y  C_  t ) )
1211an32s 779 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  TopBases  /\  x  e.  t )  /\  t  e.  ( topGen `
 B ) )  ->  E. y  e.  B  ( x  e.  y  /\  y  C_  t ) )
137, 12sylan2 460 . . . . . . . . . . . 12  |-  ( ( ( B  e.  TopBases  /\  x  e.  t )  /\  ( u  C_  ( topGen `
 B )  /\  t  e.  u )
)  ->  E. y  e.  B  ( x  e.  y  /\  y  C_  t ) )
1413an42s 800 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B
) )  /\  (
t  e.  u  /\  x  e.  t )
)  ->  E. y  e.  B  ( x  e.  y  /\  y  C_  t ) )
15 elssuni 3855 . . . . . . . . . . . . . . 15  |-  ( t  e.  u  ->  t  C_ 
U. u )
16 sstr2 3186 . . . . . . . . . . . . . . 15  |-  ( y 
C_  t  ->  (
t  C_  U. u  ->  y  C_  U. u
) )
1715, 16syl5com 26 . . . . . . . . . . . . . 14  |-  ( t  e.  u  ->  (
y  C_  t  ->  y 
C_  U. u ) )
1817anim2d 548 . . . . . . . . . . . . 13  |-  ( t  e.  u  ->  (
( x  e.  y  /\  y  C_  t
)  ->  ( x  e.  y  /\  y  C_ 
U. u ) ) )
1918reximdv 2654 . . . . . . . . . . . 12  |-  ( t  e.  u  ->  ( E. y  e.  B  ( x  e.  y  /\  y  C_  t )  ->  E. y  e.  B  ( x  e.  y  /\  y  C_  U. u
) ) )
2019ad2antrl 708 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B
) )  /\  (
t  e.  u  /\  x  e.  t )
)  ->  ( E. y  e.  B  (
x  e.  y  /\  y  C_  t )  ->  E. y  e.  B  ( x  e.  y  /\  y  C_  U. u
) ) )
2114, 20mpd 14 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B
) )  /\  (
t  e.  u  /\  x  e.  t )
)  ->  E. y  e.  B  ( x  e.  y  /\  y  C_ 
U. u ) )
2221exp32 588 . . . . . . . . 9  |-  ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B )
)  ->  ( t  e.  u  ->  ( x  e.  t  ->  E. y  e.  B  ( x  e.  y  /\  y  C_ 
U. u ) ) ) )
2322rexlimdv 2666 . . . . . . . 8  |-  ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B )
)  ->  ( E. t  e.  u  x  e.  t  ->  E. y  e.  B  ( x  e.  y  /\  y  C_ 
U. u ) ) )
246, 23syl5bi 208 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B )
)  ->  ( x  e.  U. u  ->  E. y  e.  B  ( x  e.  y  /\  y  C_ 
U. u ) ) )
2524ralrimiv 2625 . . . . . 6  |-  ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B )
)  ->  A. x  e.  U. u E. y  e.  B  ( x  e.  y  /\  y  C_ 
U. u ) )
265, 25jca 518 . . . . 5  |-  ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B )
)  ->  ( U. u  C_  U. B  /\  A. x  e.  U. u E. y  e.  B  ( x  e.  y  /\  y  C_  U. u
) ) )
2726ex 423 . . . 4  |-  ( B  e.  TopBases  ->  ( u  C_  ( topGen `  B )  ->  ( U. u  C_  U. B  /\  A. x  e.  U. u E. y  e.  B  ( x  e.  y  /\  y  C_ 
U. u ) ) ) )
28 eltg2 16696 . . . 4  |-  ( B  e.  TopBases  ->  ( U. u  e.  ( topGen `  B )  <->  ( U. u  C_  U. B  /\  A. x  e.  U. u E. y  e.  B  ( x  e.  y  /\  y  C_  U. u
) ) ) )
2927, 28sylibrd 225 . . 3  |-  ( B  e.  TopBases  ->  ( u  C_  ( topGen `  B )  ->  U. u  e.  (
topGen `  B ) ) )
3029alrimiv 1617 . 2  |-  ( B  e.  TopBases  ->  A. u ( u 
C_  ( topGen `  B
)  ->  U. u  e.  ( topGen `  B )
) )
31 inss1 3389 . . . . . . . 8  |-  ( u  i^i  v )  C_  u
32 tg1 16702 . . . . . . . 8  |-  ( u  e.  ( topGen `  B
)  ->  u  C_  U. B
)
3331, 32syl5ss 3190 . . . . . . 7  |-  ( u  e.  ( topGen `  B
)  ->  ( u  i^i  v )  C_  U. B
)
3433ad2antrl 708 . . . . . 6  |-  ( ( B  e.  TopBases  /\  (
u  e.  ( topGen `  B )  /\  v  e.  ( topGen `  B )
) )  ->  (
u  i^i  v )  C_ 
U. B )
35 eltg2 16696 . . . . . . . . . . . . 13  |-  ( B  e.  TopBases  ->  ( u  e.  ( topGen `  B )  <->  ( u  C_  U. B  /\  A. x  e.  u  E. z  e.  B  (
x  e.  z  /\  z  C_  u ) ) ) )
3635simplbda 607 . . . . . . . . . . . 12  |-  ( ( B  e.  TopBases  /\  u  e.  ( topGen `  B )
)  ->  A. x  e.  u  E. z  e.  B  ( x  e.  z  /\  z  C_  u ) )
37 rsp 2603 . . . . . . . . . . . 12  |-  ( A. x  e.  u  E. z  e.  B  (
x  e.  z  /\  z  C_  u )  -> 
( x  e.  u  ->  E. z  e.  B  ( x  e.  z  /\  z  C_  u ) ) )
3836, 37syl 15 . . . . . . . . . . 11  |-  ( ( B  e.  TopBases  /\  u  e.  ( topGen `  B )
)  ->  ( x  e.  u  ->  E. z  e.  B  ( x  e.  z  /\  z  C_  u ) ) )
39 eltg2 16696 . . . . . . . . . . . . 13  |-  ( B  e.  TopBases  ->  ( v  e.  ( topGen `  B )  <->  ( v  C_  U. B  /\  A. x  e.  v  E. w  e.  B  (
x  e.  w  /\  w  C_  v ) ) ) )
4039simplbda 607 . . . . . . . . . . . 12  |-  ( ( B  e.  TopBases  /\  v  e.  ( topGen `  B )
)  ->  A. x  e.  v  E. w  e.  B  ( x  e.  w  /\  w  C_  v ) )
41 rsp 2603 . . . . . . . . . . . 12  |-  ( A. x  e.  v  E. w  e.  B  (
x  e.  w  /\  w  C_  v )  -> 
( x  e.  v  ->  E. w  e.  B  ( x  e.  w  /\  w  C_  v ) ) )
4240, 41syl 15 . . . . . . . . . . 11  |-  ( ( B  e.  TopBases  /\  v  e.  ( topGen `  B )
)  ->  ( x  e.  v  ->  E. w  e.  B  ( x  e.  w  /\  w  C_  v ) ) )
4338, 42im2anan9 808 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  u  e.  ( topGen `  B ) )  /\  ( B  e.  TopBases  /\  v  e.  ( topGen `  B )
) )  ->  (
( x  e.  u  /\  x  e.  v
)  ->  ( E. z  e.  B  (
x  e.  z  /\  z  C_  u )  /\  E. w  e.  B  ( x  e.  w  /\  w  C_  v ) ) ) )
44 elin 3358 . . . . . . . . . 10  |-  ( x  e.  ( u  i^i  v )  <->  ( x  e.  u  /\  x  e.  v ) )
45 reeanv 2707 . . . . . . . . . 10  |-  ( E. z  e.  B  E. w  e.  B  (
( x  e.  z  /\  z  C_  u
)  /\  ( x  e.  w  /\  w  C_  v ) )  <->  ( E. z  e.  B  (
x  e.  z  /\  z  C_  u )  /\  E. w  e.  B  ( x  e.  w  /\  w  C_  v ) ) )
4643, 44, 453imtr4g 261 . . . . . . . . 9  |-  ( ( ( B  e.  TopBases  /\  u  e.  ( topGen `  B ) )  /\  ( B  e.  TopBases  /\  v  e.  ( topGen `  B )
) )  ->  (
x  e.  ( u  i^i  v )  ->  E. z  e.  B  E. w  e.  B  ( ( x  e.  z  /\  z  C_  u )  /\  (
x  e.  w  /\  w  C_  v ) ) ) )
4746anandis 803 . . . . . . . 8  |-  ( ( B  e.  TopBases  /\  (
u  e.  ( topGen `  B )  /\  v  e.  ( topGen `  B )
) )  ->  (
x  e.  ( u  i^i  v )  ->  E. z  e.  B  E. w  e.  B  ( ( x  e.  z  /\  z  C_  u )  /\  (
x  e.  w  /\  w  C_  v ) ) ) )
48 elin 3358 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( z  i^i  w )  <->  ( x  e.  z  /\  x  e.  w ) )
4948biimpri 197 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  z  /\  x  e.  w )  ->  x  e.  ( z  i^i  w ) )
50 ss2in 3396 . . . . . . . . . . . . . . . . 17  |-  ( ( z  C_  u  /\  w  C_  v )  -> 
( z  i^i  w
)  C_  ( u  i^i  v ) )
5149, 50anim12i 549 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  z  /\  x  e.  w
)  /\  ( z  C_  u  /\  w  C_  v ) )  -> 
( x  e.  ( z  i^i  w )  /\  ( z  i^i  w )  C_  (
u  i^i  v )
) )
5251an4s 799 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  z  /\  z  C_  u
)  /\  ( x  e.  w  /\  w  C_  v ) )  -> 
( x  e.  ( z  i^i  w )  /\  ( z  i^i  w )  C_  (
u  i^i  v )
) )
53 basis2 16689 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B  e.  TopBases  /\  z  e.  B )  /\  ( w  e.  B  /\  x  e.  (
z  i^i  w )
) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( z  i^i  w
) ) )
5453adantllr 699 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  TopBases 
/\  x  e.  ( u  i^i  v ) )  /\  z  e.  B )  /\  (
w  e.  B  /\  x  e.  ( z  i^i  w ) ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( z  i^i  w ) ) )
5554adantrrr 705 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  TopBases 
/\  x  e.  ( u  i^i  v ) )  /\  z  e.  B )  /\  (
w  e.  B  /\  ( x  e.  (
z  i^i  w )  /\  ( z  i^i  w
)  C_  ( u  i^i  v ) ) ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( z  i^i  w
) ) )
56 sstr2 3186 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t 
C_  ( z  i^i  w )  ->  (
( z  i^i  w
)  C_  ( u  i^i  v )  ->  t  C_  ( u  i^i  v
) ) )
5756com12 27 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  i^i  w ) 
C_  ( u  i^i  v )  ->  (
t  C_  ( z  i^i  w )  ->  t  C_  ( u  i^i  v
) ) )
5857anim2d 548 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  i^i  w ) 
C_  ( u  i^i  v )  ->  (
( x  e.  t  /\  t  C_  (
z  i^i  w )
)  ->  ( x  e.  t  /\  t  C_  ( u  i^i  v
) ) ) )
5958reximdv 2654 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  i^i  w ) 
C_  ( u  i^i  v )  ->  ( E. t  e.  B  ( x  e.  t  /\  t  C_  ( z  i^i  w ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) )
6059adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( z  i^i  w )  /\  ( z  i^i  w
)  C_  ( u  i^i  v ) )  -> 
( E. t  e.  B  ( x  e.  t  /\  t  C_  ( z  i^i  w
) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v
) ) ) )
6160ad2antll 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  TopBases 
/\  x  e.  ( u  i^i  v ) )  /\  z  e.  B )  /\  (
w  e.  B  /\  ( x  e.  (
z  i^i  w )  /\  ( z  i^i  w
)  C_  ( u  i^i  v ) ) ) )  ->  ( E. t  e.  B  (
x  e.  t  /\  t  C_  ( z  i^i  w ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) )
6255, 61mpd 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  TopBases 
/\  x  e.  ( u  i^i  v ) )  /\  z  e.  B )  /\  (
w  e.  B  /\  ( x  e.  (
z  i^i  w )  /\  ( z  i^i  w
)  C_  ( u  i^i  v ) ) ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v
) ) )
6352, 62sylanr2 634 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  e.  TopBases 
/\  x  e.  ( u  i^i  v ) )  /\  z  e.  B )  /\  (
w  e.  B  /\  ( ( x  e.  z  /\  z  C_  u )  /\  (
x  e.  w  /\  w  C_  v ) ) ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v
) ) )
6463exp32 588 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  TopBases  /\  x  e.  ( u  i^i  v ) )  /\  z  e.  B )  ->  ( w  e.  B  ->  ( ( ( x  e.  z  /\  z  C_  u )  /\  (
x  e.  w  /\  w  C_  v ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) ) )
6564rexlimdv 2666 . . . . . . . . . . . 12  |-  ( ( ( B  e.  TopBases  /\  x  e.  ( u  i^i  v ) )  /\  z  e.  B )  ->  ( E. w  e.  B  ( ( x  e.  z  /\  z  C_  u )  /\  (
x  e.  w  /\  w  C_  v ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) )
6665rexlimdva 2667 . . . . . . . . . . 11  |-  ( ( B  e.  TopBases  /\  x  e.  ( u  i^i  v
) )  ->  ( E. z  e.  B  E. w  e.  B  ( ( x  e.  z  /\  z  C_  u )  /\  (
x  e.  w  /\  w  C_  v ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) )
6766ex 423 . . . . . . . . . 10  |-  ( B  e.  TopBases  ->  ( x  e.  ( u  i^i  v
)  ->  ( E. z  e.  B  E. w  e.  B  (
( x  e.  z  /\  z  C_  u
)  /\  ( x  e.  w  /\  w  C_  v ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) ) )
6867a2d 23 . . . . . . . . 9  |-  ( B  e.  TopBases  ->  ( ( x  e.  ( u  i^i  v )  ->  E. z  e.  B  E. w  e.  B  ( (
x  e.  z  /\  z  C_  u )  /\  ( x  e.  w  /\  w  C_  v ) ) )  ->  (
x  e.  ( u  i^i  v )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) ) )
6968imp 418 . . . . . . . 8  |-  ( ( B  e.  TopBases  /\  (
x  e.  ( u  i^i  v )  ->  E. z  e.  B  E. w  e.  B  ( ( x  e.  z  /\  z  C_  u )  /\  (
x  e.  w  /\  w  C_  v ) ) ) )  ->  (
x  e.  ( u  i^i  v )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) )
7047, 69syldan 456 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  (
u  e.  ( topGen `  B )  /\  v  e.  ( topGen `  B )
) )  ->  (
x  e.  ( u  i^i  v )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) )
7170ralrimiv 2625 . . . . . 6  |-  ( ( B  e.  TopBases  /\  (
u  e.  ( topGen `  B )  /\  v  e.  ( topGen `  B )
) )  ->  A. x  e.  ( u  i^i  v
) E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v
) ) )
7234, 71jca 518 . . . . 5  |-  ( ( B  e.  TopBases  /\  (
u  e.  ( topGen `  B )  /\  v  e.  ( topGen `  B )
) )  ->  (
( u  i^i  v
)  C_  U. B  /\  A. x  e.  ( u  i^i  v ) E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) )
7372ex 423 . . . 4  |-  ( B  e.  TopBases  ->  ( ( u  e.  ( topGen `  B
)  /\  v  e.  ( topGen `  B )
)  ->  ( (
u  i^i  v )  C_ 
U. B  /\  A. x  e.  ( u  i^i  v ) E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v
) ) ) ) )
74 eltg2 16696 . . . 4  |-  ( B  e.  TopBases  ->  ( ( u  i^i  v )  e.  ( topGen `  B )  <->  ( ( u  i^i  v
)  C_  U. B  /\  A. x  e.  ( u  i^i  v ) E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) ) )
7573, 74sylibrd 225 . . 3  |-  ( B  e.  TopBases  ->  ( ( u  e.  ( topGen `  B
)  /\  v  e.  ( topGen `  B )
)  ->  ( u  i^i  v )  e.  (
topGen `  B ) ) )
7675ralrimivv 2634 . 2  |-  ( B  e.  TopBases  ->  A. u  e.  (
topGen `  B ) A. v  e.  ( topGen `  B ) ( u  i^i  v )  e.  ( topGen `  B )
)
77 fvex 5539 . . 3  |-  ( topGen `  B )  e.  _V
78 istopg 16641 . . 3  |-  ( (
topGen `  B )  e. 
_V  ->  ( ( topGen `  B )  e.  Top  <->  ( A. u ( u  C_  ( topGen `  B )  ->  U. u  e.  (
topGen `  B ) )  /\  A. u  e.  ( topGen `  B ) A. v  e.  ( topGen `
 B ) ( u  i^i  v )  e.  ( topGen `  B
) ) ) )
7977, 78ax-mp 8 . 2  |-  ( (
topGen `  B )  e. 
Top 
<->  ( A. u ( u  C_  ( topGen `  B )  ->  U. u  e.  ( topGen `  B )
)  /\  A. u  e.  ( topGen `  B ) A. v  e.  ( topGen `
 B ) ( u  i^i  v )  e.  ( topGen `  B
) ) )
8030, 76, 79sylanbrc 645 1  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    i^i cin 3151    C_ wss 3152   U.cuni 3827   ` cfv 5255   topGenctg 13342   Topctop 16631   TopBasesctb 16635
This theorem is referenced by:  tgclb  16708  tgtopon  16709  bastop  16719  elcls3  16820  resttop  16891  leordtval2  16942  tgcmp  17128  2ndctop  17173  2ndcsb  17175  2ndcsep  17185  txtop  17264  pttop  17277  xkotop  17283  alexsubALT  17745  retop  18270  onsuctop  24872  stovr  25523  intopcoaconb  25540  intopcoaconc  25541  kelac2lem  27162
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-topgen 13344  df-top 16636  df-bases 16638
  Copyright terms: Public domain W3C validator