MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgclb Unicode version

Theorem tgclb 16998
Description: The property tgcl 16997 can be reversed: if the topology generated by  B is actually a topology, then 
B must be a topological basis. This yields an alternative definition of  TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgclb  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )

Proof of Theorem tgclb
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcl 16997 . 2  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )
2 0opn 16940 . . . . . . . . . 10  |-  ( (
topGen `  B )  e. 
Top  ->  (/)  e.  ( topGen `  B ) )
32elfvexd 5726 . . . . . . . . 9  |-  ( (
topGen `  B )  e. 
Top  ->  B  e.  _V )
4 bastg 16994 . . . . . . . . 9  |-  ( B  e.  _V  ->  B  C_  ( topGen `  B )
)
53, 4syl 16 . . . . . . . 8  |-  ( (
topGen `  B )  e. 
Top  ->  B  C_  ( topGen `
 B ) )
65sselda 3316 . . . . . . 7  |-  ( ( ( topGen `  B )  e.  Top  /\  x  e.  B )  ->  x  e.  ( topGen `  B )
)
75sselda 3316 . . . . . . 7  |-  ( ( ( topGen `  B )  e.  Top  /\  y  e.  B )  ->  y  e.  ( topGen `  B )
)
86, 7anim12dan 811 . . . . . 6  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) ) )
9 inopn 16935 . . . . . . 7  |-  ( ( ( topGen `  B )  e.  Top  /\  x  e.  ( topGen `  B )  /\  y  e.  ( topGen `
 B ) )  ->  ( x  i^i  y )  e.  (
topGen `  B ) )
1093expb 1154 . . . . . 6  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  ( topGen `  B
)  /\  y  e.  ( topGen `  B )
) )  ->  (
x  i^i  y )  e.  ( topGen `  B )
)
118, 10syldan 457 . . . . 5  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  i^i  y
)  e.  ( topGen `  B ) )
12 tg2 16993 . . . . . 6  |-  ( ( ( x  i^i  y
)  e.  ( topGen `  B )  /\  z  e.  ( x  i^i  y
) )  ->  E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
1312ralrimiva 2757 . . . . 5  |-  ( ( x  i^i  y )  e.  ( topGen `  B
)  ->  A. z  e.  ( x  i^i  y
) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
1411, 13syl 16 . . . 4  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  B  /\  y  e.  B ) )  ->  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) )
1514ralrimivva 2766 . . 3  |-  ( (
topGen `  B )  e. 
Top  ->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) )
16 isbasis2g 16976 . . . 4  |-  ( B  e.  _V  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
173, 16syl 16 . . 3  |-  ( (
topGen `  B )  e. 
Top  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  A. z  e.  ( x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) ) )
1815, 17mpbird 224 . 2  |-  ( (
topGen `  B )  e. 
Top  ->  B  e.  TopBases )
191, 18impbii 181 1  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    e. wcel 1721   A.wral 2674   E.wrex 2675   _Vcvv 2924    i^i cin 3287    C_ wss 3288   (/)c0 3596   ` cfv 5421   topGenctg 13628   Topctop 16921   TopBasesctb 16925
This theorem is referenced by:  bastop2  17022  iocpnfordt  17241  icomnfordt  17242  iooordt  17243  tgcn  17278  tgcnp  17279  2ndcctbss  17479  2ndcomap  17482  dis2ndc  17484  flftg  17989  met2ndci  18513  xrtgioo  18798  topfneec  26269
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5385  df-fun 5423  df-fv 5429  df-topgen 13630  df-top 16926  df-bases 16928
  Copyright terms: Public domain W3C validator