MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgclb Unicode version

Theorem tgclb 16708
Description: The property tgcl 16707 can be reversed: if the topology generated by  B is actually a topology, then 
B must be a topological basis. This yields an alternative definition of  TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgclb  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )

Proof of Theorem tgclb
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcl 16707 . 2  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )
2 0opn 16650 . . . . . . . . . . 11  |-  ( (
topGen `  B )  e. 
Top  ->  (/)  e.  ( topGen `  B ) )
3 n0i 3460 . . . . . . . . . . 11  |-  ( (/)  e.  ( topGen `  B )  ->  -.  ( topGen `  B
)  =  (/) )
42, 3syl 15 . . . . . . . . . 10  |-  ( (
topGen `  B )  e. 
Top  ->  -.  ( topGen `  B )  =  (/) )
5 fvprc 5519 . . . . . . . . . 10  |-  ( -.  B  e.  _V  ->  (
topGen `  B )  =  (/) )
64, 5nsyl2 119 . . . . . . . . 9  |-  ( (
topGen `  B )  e. 
Top  ->  B  e.  _V )
7 bastg 16704 . . . . . . . . 9  |-  ( B  e.  _V  ->  B  C_  ( topGen `  B )
)
86, 7syl 15 . . . . . . . 8  |-  ( (
topGen `  B )  e. 
Top  ->  B  C_  ( topGen `
 B ) )
98sselda 3180 . . . . . . 7  |-  ( ( ( topGen `  B )  e.  Top  /\  x  e.  B )  ->  x  e.  ( topGen `  B )
)
108sselda 3180 . . . . . . 7  |-  ( ( ( topGen `  B )  e.  Top  /\  y  e.  B )  ->  y  e.  ( topGen `  B )
)
119, 10anim12dan 810 . . . . . 6  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) ) )
12 inopn 16645 . . . . . . 7  |-  ( ( ( topGen `  B )  e.  Top  /\  x  e.  ( topGen `  B )  /\  y  e.  ( topGen `
 B ) )  ->  ( x  i^i  y )  e.  (
topGen `  B ) )
13123expb 1152 . . . . . 6  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  ( topGen `  B
)  /\  y  e.  ( topGen `  B )
) )  ->  (
x  i^i  y )  e.  ( topGen `  B )
)
1411, 13syldan 456 . . . . 5  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  i^i  y
)  e.  ( topGen `  B ) )
15 tg2 16703 . . . . . 6  |-  ( ( ( x  i^i  y
)  e.  ( topGen `  B )  /\  z  e.  ( x  i^i  y
) )  ->  E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
1615ralrimiva 2626 . . . . 5  |-  ( ( x  i^i  y )  e.  ( topGen `  B
)  ->  A. z  e.  ( x  i^i  y
) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
1714, 16syl 15 . . . 4  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  B  /\  y  e.  B ) )  ->  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) )
1817ralrimivva 2635 . . 3  |-  ( (
topGen `  B )  e. 
Top  ->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) )
19 isbasis2g 16686 . . . 4  |-  ( B  e.  _V  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
206, 19syl 15 . . 3  |-  ( (
topGen `  B )  e. 
Top  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  A. z  e.  ( x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) ) )
2118, 20mpbird 223 . 2  |-  ( (
topGen `  B )  e. 
Top  ->  B  e.  TopBases )
221, 21impbii 180 1  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   ` cfv 5255   topGenctg 13342   Topctop 16631   TopBasesctb 16635
This theorem is referenced by:  bastop2  16732  iocpnfordt  16945  icomnfordt  16946  iooordt  16947  tgcn  16982  tgcnp  16983  2ndcctbss  17181  2ndcomap  17184  dis2ndc  17186  flftg  17691  met2ndci  18068  xrtgioo  18312  topfneec  26291
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-topgen 13344  df-top 16636  df-bases 16638
  Copyright terms: Public domain W3C validator