MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcmp Unicode version

Theorem tgcmp 17128
Description: A topology generated by a basis is compact iff open covers drawn from the basis have finite subcovers. (See also alexsub 17739, which further specializes to subbases, assuming the ultrafilter lemma.) (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
tgcmp  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  <->  A. y  e.  ~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) ) )
Distinct variable groups:    y, z, B    y, X, z

Proof of Theorem tgcmp
Dummy variables  t 
f  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . . 5  |-  U. ( topGen `
 B )  = 
U. ( topGen `  B
)
21iscmp 17115 . . . 4  |-  ( (
topGen `  B )  e. 
Comp 
<->  ( ( topGen `  B
)  e.  Top  /\  A. y  e.  ~P  ( topGen `
 B ) ( U. ( topGen `  B
)  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. ( topGen `  B
)  =  U. z
) ) )
32simprbi 450 . . 3  |-  ( (
topGen `  B )  e. 
Comp  ->  A. y  e.  ~P  ( topGen `  B )
( U. ( topGen `  B )  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. ( topGen `  B
)  =  U. z
) )
4 unitg 16705 . . . . . . . 8  |-  ( B  e.  TopBases  ->  U. ( topGen `  B
)  =  U. B
)
5 eqtr3 2302 . . . . . . . 8  |-  ( ( U. ( topGen `  B
)  =  U. B  /\  X  =  U. B )  ->  U. ( topGen `
 B )  =  X )
64, 5sylan 457 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  ->  U. ( topGen `  B )  =  X )
76eqeq1d 2291 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( U. ( topGen `  B )  =  U. y 
<->  X  =  U. y
) )
86eqeq1d 2291 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( U. ( topGen `  B )  =  U. z 
<->  X  =  U. z
) )
98rexbidv 2564 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( E. z  e.  ( ~P y  i^i 
Fin ) U. ( topGen `
 B )  = 
U. z  <->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) )
107, 9imbi12d 311 . . . . 5  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( U. ( topGen `
 B )  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. ( topGen `
 B )  = 
U. z )  <->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
1110ralbidv 2563 . . . 4  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  ( topGen `  B
) ( U. ( topGen `
 B )  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. ( topGen `
 B )  = 
U. z )  <->  A. y  e.  ~P  ( topGen `  B
) ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
12 bastg 16704 . . . . . . 7  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
1312adantr 451 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  ->  B  C_  ( topGen `  B
) )
14 sspwb 4223 . . . . . 6  |-  ( B 
C_  ( topGen `  B
)  <->  ~P B  C_  ~P ( topGen `  B )
)
1513, 14sylib 188 . . . . 5  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  ->  ~P B  C_  ~P ( topGen `
 B ) )
16 ssralv 3237 . . . . 5  |-  ( ~P B  C_  ~P ( topGen `
 B )  -> 
( A. y  e. 
~P  ( topGen `  B
) ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )  ->  A. y  e.  ~P  B ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
1715, 16syl 15 . . . 4  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  ( topGen `  B
) ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )  ->  A. y  e.  ~P  B ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
1811, 17sylbid 206 . . 3  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  ( topGen `  B
) ( U. ( topGen `
 B )  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. ( topGen `
 B )  = 
U. z )  ->  A. y  e.  ~P  B ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
193, 18syl5 28 . 2  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  ->  A. y  e.  ~P  B
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) ) )
20 elpwi 3633 . . . . 5  |-  ( u  e.  ~P ( topGen `  B )  ->  u  C_  ( topGen `  B )
)
21 simprr 733 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  X  =  U. u
)
22 simprl 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  u  C_  ( topGen `  B
) )
2322sselda 3180 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  t  e.  u
)  ->  t  e.  ( topGen `  B )
)
2423adantrr 697 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( t  e.  u  /\  y  e.  t ) )  -> 
t  e.  ( topGen `  B ) )
25 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( t  e.  u  /\  y  e.  t ) )  -> 
y  e.  t )
26 tg2 16703 . . . . . . . . . . . . . . . 16  |-  ( ( t  e.  ( topGen `  B )  /\  y  e.  t )  ->  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) )
2724, 25, 26syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( t  e.  u  /\  y  e.  t ) )  ->  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) )
2827expr 598 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  t  e.  u
)  ->  ( y  e.  t  ->  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) ) )
2928reximdva 2655 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( E. t  e.  u  y  e.  t  ->  E. t  e.  u  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) ) )
30 eluni2 3831 . . . . . . . . . . . . 13  |-  ( y  e.  U. u  <->  E. t  e.  u  y  e.  t )
31 elunirab 3840 . . . . . . . . . . . . . 14  |-  ( y  e.  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  <->  E. w  e.  B  ( y  e.  w  /\  E. t  e.  u  w  C_  t
) )
32 r19.42v 2694 . . . . . . . . . . . . . . 15  |-  ( E. t  e.  u  ( y  e.  w  /\  w  C_  t )  <->  ( y  e.  w  /\  E. t  e.  u  w  C_  t
) )
3332rexbii 2568 . . . . . . . . . . . . . 14  |-  ( E. w  e.  B  E. t  e.  u  (
y  e.  w  /\  w  C_  t )  <->  E. w  e.  B  ( y  e.  w  /\  E. t  e.  u  w  C_  t
) )
34 rexcom 2701 . . . . . . . . . . . . . 14  |-  ( E. w  e.  B  E. t  e.  u  (
y  e.  w  /\  w  C_  t )  <->  E. t  e.  u  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) )
3531, 33, 343bitr2i 264 . . . . . . . . . . . . 13  |-  ( y  e.  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  <->  E. t  e.  u  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) )
3629, 30, 353imtr4g 261 . . . . . . . . . . . 12  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( y  e.  U. u  ->  y  e.  U. { w  e.  B  |  E. t  e.  u  w  C_  t } ) )
3736ssrdv 3185 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  U. u  C_  U. {
w  e.  B  |  E. t  e.  u  w  C_  t } )
3821, 37eqsstrd 3212 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  X  C_  U. { w  e.  B  |  E. t  e.  u  w  C_  t } )
39 ssrab2 3258 . . . . . . . . . . . 12  |-  { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  B
40 uniss 3848 . . . . . . . . . . . 12  |-  ( { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  B  ->  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  U. B )
4139, 40ax-mp 8 . . . . . . . . . . 11  |-  U. {
w  e.  B  |  E. t  e.  u  w  C_  t }  C_  U. B
42 simplr 731 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  X  =  U. B )
4341, 42syl5sseqr 3227 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  X )
4438, 43eqssd 3196 . . . . . . . . 9  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  X  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t } )
45 elpw2g 4174 . . . . . . . . . . . 12  |-  ( B  e.  TopBases  ->  ( { w  e.  B  |  E. t  e.  u  w  C_  t }  e.  ~P B 
<->  { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  B ) )
4645ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( { w  e.  B  |  E. t  e.  u  w  C_  t }  e.  ~P B  <->  { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  B ) )
4739, 46mpbiri 224 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  { w  e.  B  |  E. t  e.  u  w  C_  t }  e.  ~P B )
48 unieq 3836 . . . . . . . . . . . . 13  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  U. y  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t } )
4948eqeq2d 2294 . . . . . . . . . . . 12  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ( X  = 
U. y  <->  X  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t } ) )
50 pweq 3628 . . . . . . . . . . . . . 14  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ~P y  =  ~P { w  e.  B  |  E. t  e.  u  w  C_  t } )
5150ineq1d 3369 . . . . . . . . . . . . 13  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ( ~P y  i^i  Fin )  =  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) )
5251rexeqdv 2743 . . . . . . . . . . . 12  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ( E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z  <->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) )
5349, 52imbi12d 311 . . . . . . . . . . 11  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ( ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  <->  ( X  = 
U. { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) ) )
5453rspcv 2880 . . . . . . . . . 10  |-  ( { w  e.  B  |  E. t  e.  u  w  C_  t }  e.  ~P B  ->  ( A. y  e.  ~P  B
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z )  ->  ( X  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) ) )
5547, 54syl 15 . . . . . . . . 9  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  ( X  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) ) )
5644, 55mpid 37 . . . . . . . 8  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) )
57 elfpw 7157 . . . . . . . . . . . . . 14  |-  ( z  e.  ( ~P {
w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  <->  ( z  C_  { w  e.  B  |  E. t  e.  u  w  C_  t }  /\  z  e.  Fin )
)
5857simprbi 450 . . . . . . . . . . . . 13  |-  ( z  e.  ( ~P {
w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  ->  z  e.  Fin )
5958ad2antrl 708 . . . . . . . . . . . 12  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  -> 
z  e.  Fin )
6057simplbi 446 . . . . . . . . . . . . . 14  |-  ( z  e.  ( ~P {
w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  ->  z  C_  { w  e.  B  |  E. t  e.  u  w  C_  t } )
6160ad2antrl 708 . . . . . . . . . . . . 13  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  -> 
z  C_  { w  e.  B  |  E. t  e.  u  w  C_  t } )
62 ssrab 3251 . . . . . . . . . . . . . 14  |-  ( z 
C_  { w  e.  B  |  E. t  e.  u  w  C_  t } 
<->  ( z  C_  B  /\  A. w  e.  z  E. t  e.  u  w  C_  t ) )
6362simprbi 450 . . . . . . . . . . . . 13  |-  ( z 
C_  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  A. w  e.  z  E. t  e.  u  w  C_  t )
6461, 63syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  ->  A. w  e.  z  E. t  e.  u  w  C_  t )
65 sseq2 3200 . . . . . . . . . . . . 13  |-  ( t  =  ( f `  w )  ->  (
w  C_  t  <->  w  C_  (
f `  w )
) )
6665ac6sfi 7101 . . . . . . . . . . . 12  |-  ( ( z  e.  Fin  /\  A. w  e.  z  E. t  e.  u  w  C_  t )  ->  E. f
( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )
6759, 64, 66syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  ->  E. f ( f : z --> u  /\  A. w  e.  z  w  C_  ( f `  w
) ) )
68 frn 5395 . . . . . . . . . . . . . . . 16  |-  ( f : z --> u  ->  ran  f  C_  u )
6968ad2antrl 708 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  ran  f  C_  u )
70 ffn 5389 . . . . . . . . . . . . . . . . . 18  |-  ( f : z --> u  -> 
f  Fn  z )
71 dffn4 5457 . . . . . . . . . . . . . . . . . 18  |-  ( f  Fn  z  <->  f :
z -onto-> ran  f )
7270, 71sylib 188 . . . . . . . . . . . . . . . . 17  |-  ( f : z --> u  -> 
f : z -onto-> ran  f )
7372adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
)  ->  f :
z -onto-> ran  f )
74 fofi 7142 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  Fin  /\  f : z -onto-> ran  f
)  ->  ran  f  e. 
Fin )
7559, 73, 74syl2an 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  ran  f  e.  Fin )
76 elfpw 7157 . . . . . . . . . . . . . . 15  |-  ( ran  f  e.  ( ~P u  i^i  Fin )  <->  ( ran  f  C_  u  /\  ran  f  e.  Fin ) )
7769, 75, 76sylanbrc 645 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  ran  f  e.  ( ~P u  i^i  Fin ) )
78 simplrr 737 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  X  =  U. z )
79 uniiun 3955 . . . . . . . . . . . . . . . . . . 19  |-  U. z  =  U_ w  e.  z  w
80 ss2iun 3920 . . . . . . . . . . . . . . . . . . 19  |-  ( A. w  e.  z  w  C_  ( f `  w
)  ->  U_ w  e.  z  w  C_  U_ w  e.  z  ( f `  w ) )
8179, 80syl5eqss 3222 . . . . . . . . . . . . . . . . . 18  |-  ( A. w  e.  z  w  C_  ( f `  w
)  ->  U. z  C_ 
U_ w  e.  z  ( f `  w
) )
8281ad2antll 709 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U. z  C_ 
U_ w  e.  z  ( f `  w
) )
83 fniunfv 5773 . . . . . . . . . . . . . . . . . . 19  |-  ( f  Fn  z  ->  U_ w  e.  z  ( f `  w )  =  U. ran  f )
8470, 83syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( f : z --> u  ->  U_ w  e.  z 
( f `  w
)  =  U. ran  f )
8584ad2antrl 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U_ w  e.  z  ( f `  w )  =  U. ran  f )
8682, 85sseqtrd 3214 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U. z  C_ 
U. ran  f )
8778, 86eqsstrd 3212 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  X  C_ 
U. ran  f )
88 uniss 3848 . . . . . . . . . . . . . . . . 17  |-  ( ran  f  C_  u  ->  U.
ran  f  C_  U. u
)
8969, 88syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U. ran  f  C_  U. u )
9021ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  X  =  U. u )
9189, 90sseqtr4d 3215 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U. ran  f  C_  X )
9287, 91eqssd 3196 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  X  =  U. ran  f )
93 unieq 3836 . . . . . . . . . . . . . . . 16  |-  ( v  =  ran  f  ->  U. v  =  U. ran  f )
9493eqeq2d 2294 . . . . . . . . . . . . . . 15  |-  ( v  =  ran  f  -> 
( X  =  U. v 
<->  X  =  U. ran  f ) )
9594rspcev 2884 . . . . . . . . . . . . . 14  |-  ( ( ran  f  e.  ( ~P u  i^i  Fin )  /\  X  =  U. ran  f )  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v )
9677, 92, 95syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v )
9796ex 423 . . . . . . . . . . . 12  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  -> 
( ( f : z --> u  /\  A. w  e.  z  w  C_  ( f `  w
) )  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) )
9897exlimdv 1664 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  -> 
( E. f ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
)  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) )
9967, 98mpd 14 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  ->  E. v  e.  ( ~P u  i^i  Fin ) X  =  U. v
)
10099expr 598 . . . . . . . . 9  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) )  ->  ( X  = 
U. z  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) )
101100rexlimdva 2667 . . . . . . . 8  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z  ->  E. v  e.  ( ~P u  i^i  Fin ) X  =  U. v ) )
10256, 101syld 40 . . . . . . 7  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) )
103102expr 598 . . . . . 6  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  u  C_  ( topGen `
 B ) )  ->  ( X  = 
U. u  ->  ( A. y  e.  ~P  B ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )  ->  E. v  e.  ( ~P u  i^i  Fin ) X  =  U. v
) ) )
104103com23 72 . . . . 5  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  u  C_  ( topGen `
 B ) )  ->  ( A. y  e.  ~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  ( X  =  U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
10520, 104sylan2 460 . . . 4  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  u  e.  ~P ( topGen `  B )
)  ->  ( A. y  e.  ~P  B
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z )  ->  ( X  =  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) X  =  U. v ) ) )
106105ralrimdva 2633 . . 3  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  A. u  e.  ~P  ( topGen `  B
) ( X  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
107 tgcl 16707 . . . . . 6  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )
108107adantr 451 . . . . 5  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( topGen `  B )  e.  Top )
1091iscmp 17115 . . . . . 6  |-  ( (
topGen `  B )  e. 
Comp 
<->  ( ( topGen `  B
)  e.  Top  /\  A. u  e.  ~P  ( topGen `
 B ) ( U. ( topGen `  B
)  =  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) U. ( topGen `  B
)  =  U. v
) ) )
110109baib 871 . . . . 5  |-  ( (
topGen `  B )  e. 
Top  ->  ( ( topGen `  B )  e.  Comp  <->  A. u  e.  ~P  ( topGen `
 B ) ( U. ( topGen `  B
)  =  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) U. ( topGen `  B
)  =  U. v
) ) )
111108, 110syl 15 . . . 4  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  <->  A. u  e.  ~P  ( topGen `  B
) ( U. ( topGen `
 B )  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) U. ( topGen `
 B )  = 
U. v ) ) )
1126eqeq1d 2291 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( U. ( topGen `  B )  =  U. u 
<->  X  =  U. u
) )
1136eqeq1d 2291 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( U. ( topGen `  B )  =  U. v 
<->  X  =  U. v
) )
114113rexbidv 2564 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( E. v  e.  ( ~P u  i^i 
Fin ) U. ( topGen `
 B )  = 
U. v  <->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) )
115112, 114imbi12d 311 . . . . 5  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( U. ( topGen `
 B )  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) U. ( topGen `
 B )  = 
U. v )  <->  ( X  =  U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
116115ralbidv 2563 . . . 4  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. u  e. 
~P  ( topGen `  B
) ( U. ( topGen `
 B )  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) U. ( topGen `
 B )  = 
U. v )  <->  A. u  e.  ~P  ( topGen `  B
) ( X  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
117111, 116bitrd 244 . . 3  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  <->  A. u  e.  ~P  ( topGen `  B
) ( X  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
118106, 117sylibrd 225 . 2  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  ( topGen `  B )  e.  Comp ) )
11919, 118impbid 183 1  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  <->  A. y  e.  ~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   {crab 2547    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   U.cuni 3827   U_ciun 3905   ran crn 4690    Fn wfn 5250   -->wf 5251   -onto->wfo 5253   ` cfv 5255   Fincfn 6863   topGenctg 13342   Topctop 16631   TopBasesctb 16635   Compccmp 17113
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6479  df-er 6660  df-en 6864  df-dom 6865  df-fin 6867  df-topgen 13344  df-top 16636  df-bases 16638  df-cmp 17114
  Copyright terms: Public domain W3C validator