MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgioo Unicode version

Theorem tgioo 18318
Description: The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
remet.1  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
tgioo.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
tgioo  |-  ( topGen ` 
ran  (,) )  =  J

Proof of Theorem tgioo
Dummy variables  x  y  z  a  b 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . 4  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
21rexmet 18313 . . 3  |-  D  e.  ( * Met `  RR )
3 tgioo.2 . . . 4  |-  J  =  ( MetOpen `  D )
43mopnval 18000 . . 3  |-  ( D  e.  ( * Met `  RR )  ->  J  =  ( topGen `  ran  ( ball `  D )
) )
52, 4ax-mp 8 . 2  |-  J  =  ( topGen `  ran  ( ball `  D ) )
61blssioo 18317 . . 3  |-  ran  ( ball `  D )  C_  ran  (,)
7 elssuni 3871 . . . . . . 7  |-  ( v  e.  ran  (,)  ->  v 
C_  U. ran  (,) )
8 unirnioo 10759 . . . . . . 7  |-  RR  =  U. ran  (,)
97, 8syl6sseqr 3238 . . . . . 6  |-  ( v  e.  ran  (,)  ->  v 
C_  RR )
10 retopbas 18285 . . . . . . . . . 10  |-  ran  (,)  e. 
TopBases
1110a1i 10 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  ran  (,)  e.  TopBases )
12 simpl 443 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  v  e.  ran  (,) )
139sselda 3193 . . . . . . . . . 10  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  RR )
14 1re 8853 . . . . . . . . . . . 12  |-  1  e.  RR
151bl2ioo 18314 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  1  e.  RR )  ->  ( x ( ball `  D ) 1 )  =  ( ( x  -  1 ) (,) ( x  +  1 ) ) )
1614, 15mpan2 652 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
x ( ball `  D
) 1 )  =  ( ( x  - 
1 ) (,) (
x  +  1 ) ) )
17 peano2rem 9129 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR )
1817rexrd 8897 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR* )
19 peano2re 9001 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
2019rexrd 8897 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR* )
21 ioof 10757 . . . . . . . . . . . . . 14  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
22 ffn 5405 . . . . . . . . . . . . . 14  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
2321, 22ax-mp 8 . . . . . . . . . . . . 13  |-  (,)  Fn  ( RR*  X.  RR* )
24 fnovrn 6011 . . . . . . . . . . . . 13  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  (
x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* )  ->  (
( x  -  1 ) (,) ( x  +  1 ) )  e.  ran  (,) )
2523, 24mp3an1 1264 . . . . . . . . . . . 12  |-  ( ( ( x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* )  ->  (
( x  -  1 ) (,) ( x  +  1 ) )  e.  ran  (,) )
2618, 20, 25syl2anc 642 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
( x  -  1 ) (,) ( x  +  1 ) )  e.  ran  (,) )
2716, 26eqeltrd 2370 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
x ( ball `  D
) 1 )  e. 
ran  (,) )
2813, 27syl 15 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  ( x (
ball `  D )
1 )  e.  ran  (,) )
29 simpr 447 . . . . . . . . . 10  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  v )
30 1rp 10374 . . . . . . . . . . . 12  |-  1  e.  RR+
31 blcntr 17980 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  RR )  /\  x  e.  RR  /\  1  e.  RR+ )  ->  x  e.  ( x ( ball `  D
) 1 ) )
322, 30, 31mp3an13 1268 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  x  e.  ( x ( ball `  D ) 1 ) )
3313, 32syl 15 . . . . . . . . . 10  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  ( x ( ball `  D
) 1 ) )
34 elin 3371 . . . . . . . . . 10  |-  ( x  e.  ( v  i^i  ( x ( ball `  D ) 1 ) )  <->  ( x  e.  v  /\  x  e.  ( x ( ball `  D ) 1 ) ) )
3529, 33, 34sylanbrc 645 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  ( v  i^i  ( x ( ball `  D
) 1 ) ) )
36 basis2 16705 . . . . . . . . 9  |-  ( ( ( ran  (,)  e.  TopBases  /\  v  e.  ran  (,) )  /\  ( ( x ( ball `  D
) 1 )  e. 
ran  (,)  /\  x  e.  ( v  i^i  (
x ( ball `  D
) 1 ) ) ) )  ->  E. z  e.  ran  (,) ( x  e.  z  /\  z  C_  ( v  i^i  (
x ( ball `  D
) 1 ) ) ) )
3711, 12, 28, 35, 36syl22anc 1183 . . . . . . . 8  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  E. z  e.  ran  (,) ( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) )
38 ovelrn 6012 . . . . . . . . . . 11  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( z  e. 
ran  (,)  <->  E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b ) ) )
3923, 38ax-mp 8 . . . . . . . . . 10  |-  ( z  e.  ran  (,)  <->  E. a  e.  RR*  E. b  e. 
RR*  z  =  ( a (,) b ) )
40 eleq2 2357 . . . . . . . . . . . . . . 15  |-  ( z  =  ( a (,) b )  ->  (
x  e.  z  <->  x  e.  ( a (,) b
) ) )
41 sseq1 3212 . . . . . . . . . . . . . . 15  |-  ( z  =  ( a (,) b )  ->  (
z  C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  <->  ( a (,) b )  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) )
4240, 41anbi12d 691 . . . . . . . . . . . . . 14  |-  ( z  =  ( a (,) b )  ->  (
( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) )  <-> 
( x  e.  ( a (,) b )  /\  ( a (,) b )  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) ) )
43 inss2 3403 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  ( x ( ball `  D ) 1 )
44 sstr 3200 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  /\  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  ( x ( ball `  D ) 1 ) )  ->  ( a (,) b )  C_  (
x ( ball `  D
) 1 ) )
4543, 44mpan2 652 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a (,) b ) 
C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  ->  ( a (,) b )  C_  (
x ( ball `  D
) 1 ) )
4645adantl 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b ) 
C_  ( x (
ball `  D )
1 ) )
47 elioore 10702 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( a (,) b )  ->  x  e.  RR )
4847adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  x  e.  RR )
4948, 16syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x ( ball `  D
) 1 )  =  ( ( x  - 
1 ) (,) (
x  +  1 ) ) )
5046, 49sseqtrd 3227 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b ) 
C_  ( ( x  -  1 ) (,) ( x  +  1 ) ) )
51 dfss 3180 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a (,) b ) 
C_  ( ( x  -  1 ) (,) ( x  +  1 ) )  <->  ( a (,) b )  =  ( ( a (,) b
)  i^i  ( (
x  -  1 ) (,) ( x  + 
1 ) ) ) )
5250, 51sylib 188 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b )  =  ( ( a (,) b )  i^i  ( ( x  - 
1 ) (,) (
x  +  1 ) ) ) )
53 eliooxr 10725 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( a (,) b )  ->  (
a  e.  RR*  /\  b  e.  RR* ) )
5418, 20jca 518 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR  ->  (
( x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* ) )
5547, 54syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( a (,) b )  ->  (
( x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* ) )
56 iooin 10706 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  ( ( x  - 
1 )  e.  RR*  /\  ( x  +  1 )  e.  RR* )
)  ->  ( (
a (,) b )  i^i  ( ( x  -  1 ) (,) ( x  +  1 ) ) )  =  ( if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a ) (,)
if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) ) ) )
5753, 55, 56syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( (
x  -  1 ) (,) ( x  + 
1 ) ) )  =  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) ) )
5857adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
( a (,) b
)  i^i  ( (
x  -  1 ) (,) ( x  + 
1 ) ) )  =  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) ) )
5952, 58eqtrd 2328 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b )  =  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) ) )
60 mnfxr 10472 . . . . . . . . . . . . . . . . . . . 20  |-  -oo  e.  RR*
6160a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  -oo  e.  RR* )
6248, 18syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  -  1 )  e.  RR* )
6353adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a  e.  RR*  /\  b  e.  RR* ) )
6463simpld 445 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  a  e.  RR* )
65 ifcl 3614 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  -  1 )  e.  RR*  /\  a  e.  RR* )  ->  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  e.  RR* )
6662, 64, 65syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  e.  RR* )
6763simprd 449 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  b  e.  RR* )
6848, 19syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  +  1 )  e.  RR )
6968rexrd 8897 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  +  1 )  e.  RR* )
70 ifcl 3614 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( b  e.  RR*  /\  (
x  +  1 )  e.  RR* )  ->  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR* )
7167, 69, 70syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR* )
7247, 17syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( a (,) b )  ->  (
x  -  1 )  e.  RR )
7372adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  -  1 )  e.  RR )
74 mnflt 10480 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  -  1 )  e.  RR  ->  -oo  <  ( x  -  1 ) )
7573, 74syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  -oo  <  ( x  -  1 ) )
76 xrmax2 10521 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  RR*  /\  (
x  -  1 )  e.  RR* )  ->  (
x  -  1 )  <_  if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a ) )
7764, 62, 76syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  -  1 )  <_  if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a ) )
7861, 62, 66, 75, 77xrltletrd 10508 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  -oo  <  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a ) )
79 simpl 443 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  x  e.  ( a (,) b
) )
8079, 59eleqtrd 2372 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  x  e.  ( if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a ) (,)
if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) ) ) )
81 eliooxr 10725 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) )  ->  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR*  /\  if ( b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR* ) )
82 ne0i 3474 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) )  ->  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) )  =/=  (/) )
83 ioon0 10698 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( if ( a  <_ 
( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR*  /\  if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR* )  ->  ( ( if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a ) (,) if ( b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) ) )  =/=  (/)  <->  if (
a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a )  <  if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) ) )
8482, 83syl5ib 210 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( if ( a  <_ 
( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR*  /\  if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR* )  ->  ( x  e.  ( if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a ) (,)
if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) ) )  ->  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  <  if ( b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) ) ) )
8581, 84mpcom 32 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) )  ->  if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a )  < 
if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) ) )
8680, 85syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  <  if ( b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) ) )
87 xrre2 10515 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (  -oo  e.  RR*  /\  if ( a  <_ 
( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR*  /\  if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR* )  /\  (  -oo  <  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  /\  if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a )  <  if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) ) )  ->  if (
a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR )
8861, 66, 71, 78, 86, 87syl32anc 1190 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  e.  RR )
89 mnfle 10486 . . . . . . . . . . . . . . . . . . . . 21  |-  ( if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  e.  RR*  ->  -oo 
<_  if ( a  <_ 
( x  -  1 ) ,  ( x  -  1 ) ,  a ) )
9066, 89syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  -oo  <_  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a ) )
9161, 66, 71, 90, 86xrlelttrd 10507 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  -oo  <  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) ) )
92 xrmin2 10523 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( b  e.  RR*  /\  (
x  +  1 )  e.  RR* )  ->  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) )  <_  ( x  +  1 ) )
9367, 69, 92syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) )  <_  ( x  +  1 ) )
94 xrre 10514 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) )  e. 
RR*  /\  ( x  +  1 )  e.  RR )  /\  (  -oo  <  if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) )  /\  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) )  <_  ( x  +  1 ) ) )  ->  if (
b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR )
9571, 68, 91, 93, 94syl22anc 1183 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR )
961ioo2blex 18316 . . . . . . . . . . . . . . . . . 18  |-  ( ( if ( a  <_ 
( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR  /\  if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR )  ->  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) )  e.  ran  ( ball `  D ) )
9788, 95, 96syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  ( if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a ) (,) if ( b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) ) )  e.  ran  ( ball `  D ) )
9859, 97eqeltrd 2370 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b )  e.  ran  ( ball `  D ) )
99 inss1 3402 . . . . . . . . . . . . . . . . . 18  |-  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  v
100 sstr 3200 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  /\  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  v )  ->  (
a (,) b ) 
C_  v )
10199, 100mpan2 652 . . . . . . . . . . . . . . . . 17  |-  ( ( a (,) b ) 
C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  ->  ( a (,) b )  C_  v
)
102101adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b ) 
C_  v )
103 sseq1 3212 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( a (,) b )  ->  (
z  C_  v  <->  ( a (,) b )  C_  v
) )
10440, 103anbi12d 691 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( a (,) b )  ->  (
( x  e.  z  /\  z  C_  v
)  <->  ( x  e.  ( a (,) b
)  /\  ( a (,) b )  C_  v
) ) )
105104rspcev 2897 . . . . . . . . . . . . . . . 16  |-  ( ( ( a (,) b
)  e.  ran  ( ball `  D )  /\  ( x  e.  (
a (,) b )  /\  ( a (,) b )  C_  v
) )  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  v ) )
10698, 79, 102, 105syl12anc 1180 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  v ) )
107 blssex 17989 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( * Met `  RR )  /\  x  e.  RR )  ->  ( E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  v )  <->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) )
1082, 48, 107sylancr 644 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  ( E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  v
)  <->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v ) )
109106, 108mpbid 201 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
)
11042, 109syl6bi 219 . . . . . . . . . . . . 13  |-  ( z  =  ( a (,) b )  ->  (
( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) )  ->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v ) )
111110a1i 10 . . . . . . . . . . . 12  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
z  =  ( a (,) b )  -> 
( ( x  e.  z  /\  z  C_  ( v  i^i  (
x ( ball `  D
) 1 ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) ) )
112111rexlimivv 2685 . . . . . . . . . . 11  |-  ( E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b )  ->  ( ( x  e.  z  /\  z  C_  ( v  i^i  (
x ( ball `  D
) 1 ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) )
113112imp 418 . . . . . . . . . 10  |-  ( ( E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b )  /\  (
x  e.  z  /\  z  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) ) )  ->  E. y  e.  RR+  (
x ( ball `  D
) y )  C_  v )
11439, 113sylanb 458 . . . . . . . . 9  |-  ( ( z  e.  ran  (,)  /\  ( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
)
115114rexlimiva 2675 . . . . . . . 8  |-  ( E. z  e.  ran  (,) ( x  e.  z  /\  z  C_  ( v  i^i  ( x (
ball `  D )
1 ) ) )  ->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v )
11637, 115syl 15 . . . . . . 7  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v )
117116ralrimiva 2639 . . . . . 6  |-  ( v  e.  ran  (,)  ->  A. x  e.  v  E. y  e.  RR+  ( x ( ball `  D
) y )  C_  v )
1183elmopn2 18007 . . . . . . 7  |-  ( D  e.  ( * Met `  RR )  ->  (
v  e.  J  <->  ( v  C_  RR  /\  A. x  e.  v  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) ) )
1192, 118ax-mp 8 . . . . . 6  |-  ( v  e.  J  <->  ( v  C_  RR  /\  A. x  e.  v  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) )
1209, 117, 119sylanbrc 645 . . . . 5  |-  ( v  e.  ran  (,)  ->  v  e.  J )
121120ssriv 3197 . . . 4  |-  ran  (,)  C_  J
122121, 5sseqtri 3223 . . 3  |-  ran  (,)  C_  ( topGen `  ran  ( ball `  D ) )
123 2basgen 16744 . . 3  |-  ( ( ran  ( ball `  D
)  C_  ran  (,)  /\  ran  (,)  C_  ( topGen ` 
ran  ( ball `  D
) ) )  -> 
( topGen `  ran  ( ball `  D ) )  =  ( topGen `  ran  (,) )
)
1246, 122, 123mp2an 653 . 2  |-  ( topGen ` 
ran  ( ball `  D
) )  =  (
topGen `  ran  (,) )
1255, 124eqtr2i 2317 1  |-  ( topGen ` 
ran  (,) )  =  J
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    i^i cin 3164    C_ wss 3165   (/)c0 3468   ifcif 3578   ~Pcpw 3638   U.cuni 3843   class class class wbr 4039    X. cxp 4703   ran crn 4706    |` cres 4707    o. ccom 4709    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   RRcr 8752   1c1 8754    + caddc 8756    -oocmnf 8881   RR*cxr 8882    < clt 8883    <_ cle 8884    - cmin 9053   RR+crp 10370   (,)cioo 10672   abscabs 11735   topGenctg 13358   * Metcxmt 16385   ballcbl 16387   MetOpencmopn 16388   TopBasesctb 16651
This theorem is referenced by:  qdensere2  18319  rehaus  18321  resubmet  18324  tgioo2  18325  xrsmopn  18334  iccntr  18342  icccmplem3  18345  reconnlem2  18348  opnreen  18352  metdscn2  18377  evthicc  18835  opnmbllem  18972  dvlip2  19358  lhop  19379  dvcnvre  19382  nmcvcn  21284  altretop  25703  opnrebl  26338  opnrebl2  26339  reheibor  26666
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-bases 16654
  Copyright terms: Public domain W3C validator