MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgioo2 Structured version   Unicode version

Theorem tgioo2 18826
Description: The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypothesis
Ref Expression
tgioo2.1  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
tgioo2  |-  ( topGen ` 
ran  (,) )  =  ( Jt  RR )

Proof of Theorem tgioo2
StepHypRef Expression
1 eqid 2435 . 2  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
2 cnxmet 18799 . . 3  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
3 ax-resscn 9039 . . 3  |-  RR  C_  CC
4 tgioo2.1 . . . . 5  |-  J  =  ( TopOpen ` fld )
54cnfldtopn 18808 . . . 4  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
6 eqid 2435 . . . 4  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
71, 5, 6metrest 18546 . . 3  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  RR  C_  CC )  -> 
( Jt  RR )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ) )
82, 3, 7mp2an 654 . 2  |-  ( Jt  RR )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
91, 8tgioo 18819 1  |-  ( topGen ` 
ran  (,) )  =  ( Jt  RR )
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725    C_ wss 3312    X. cxp 4868   ran crn 4871    |` cres 4872    o. ccom 4874   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981    - cmin 9283   (,)cioo 10908   abscabs 12031   ↾t crest 13640   TopOpenctopn 13641   topGenctg 13657   * Metcxmt 16678   MetOpencmopn 16683  ℂfldccnfld 16695
This theorem is referenced by:  rerest  18827  tgioo3  18828  zcld2  18838  metdcn  18863  metdscn2  18879  abscncfALT  18942  cnrehmeo  18970  rellycmp  18974  evth  18976  evth2  18977  lebnumlem2  18979  resscdrg  19304  cncombf  19542  cnmbf  19543  dvcjbr  19827  rolle  19866  cmvth  19867  mvth  19868  dvlip  19869  dvlipcn  19870  dvlip2  19871  c1liplem1  19872  dvgt0lem1  19878  dvle  19883  dvivthlem1  19884  dvne0  19887  lhop1lem  19889  lhop2  19891  lhop  19892  dvcnvrelem1  19893  dvcnvrelem2  19894  dvcnvre  19895  dvcvx  19896  dvfsumle  19897  dvfsumabs  19899  dvfsumlem2  19903  ftc1  19918  ftc1cn  19919  ftc2  19920  ftc2ditglem  19921  itgparts  19923  itgsubstlem  19924  taylthlem2  20282  efcvx  20357  pige3  20417  dvloglem  20531  logdmopn  20532  advlog  20537  advlogexp  20538  logccv  20546  loglesqr  20634  ftalem3  20849  log2sumbnd  21230  nmcnc  22184  ipasslem7  22329  rmulccn  24306  raddcn  24307  lgamgulmlem2  24806  ftc1cnnc  26269  ftc2nc  26279  dvreasin  26280  dvreacos  26281  areacirclem2  26282  areacirclem3  26283  areacirc  26288  lhe4.4ex1a  27514  refsumcn  27668  climreeq  27706  itgsin0pilem1  27711  itgsinexplem1  27715
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-fz 11036  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-plusg 13534  df-mulr 13535  df-starv 13536  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-rest 13642  df-topn 13643  df-topgen 13659  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958
  Copyright terms: Public domain W3C validator