MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpt0 Structured version   Unicode version

Theorem tgpt0 18149
Description: Hausdorff and T0 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypothesis
Ref Expression
tgpt1.j  |-  J  =  ( TopOpen `  G )
Assertion
Ref Expression
tgpt0  |-  ( G  e.  TopGrp  ->  ( J  e. 
Haus 
<->  J  e.  Kol2 )
)

Proof of Theorem tgpt0
Dummy variables  w  a  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpt1.j . . 3  |-  J  =  ( TopOpen `  G )
21tgpt1 18148 . 2  |-  ( G  e.  TopGrp  ->  ( J  e. 
Haus 
<->  J  e.  Fre )
)
3 t1t0 17413 . . 3  |-  ( J  e.  Fre  ->  J  e.  Kol2 )
4 eleq2 2498 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  (
x  e.  w  <->  x  e.  z ) )
5 eleq2 2498 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  (
y  e.  w  <->  y  e.  z ) )
64, 5imbi12d 313 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  (
( x  e.  w  ->  y  e.  w )  <-> 
( x  e.  z  ->  y  e.  z ) ) )
76rspccva 3052 . . . . . . . . . . . 12  |-  ( ( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  /\  z  e.  J
)  ->  ( x  e.  z  ->  y  e.  z ) )
87adantll 696 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  z  e.  J )  ->  (
x  e.  z  -> 
y  e.  z ) )
9 tgpgrp 18109 . . . . . . . . . . . . . . . . 17  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
109ad3antrrr 712 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  ->  G  e.  Grp )
11 simpllr 737 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) ) )
1211simprd 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
y  e.  ( Base `  G ) )
13 eqid 2437 . . . . . . . . . . . . . . . . 17  |-  ( Base `  G )  =  (
Base `  G )
14 eqid 2437 . . . . . . . . . . . . . . . . 17  |-  ( 0g
`  G )  =  ( 0g `  G
)
15 eqid 2437 . . . . . . . . . . . . . . . . 17  |-  ( -g `  G )  =  (
-g `  G )
1613, 14, 15grpsubid 14874 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  y  e.  ( Base `  G ) )  -> 
( y ( -g `  G ) y )  =  ( 0g `  G ) )
1710, 12, 16syl2anc 644 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( y ( -g `  G ) y )  =  ( 0g `  G ) )
1817oveq1d 6097 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( ( y (
-g `  G )
y ) ( +g  `  G ) x )  =  ( ( 0g
`  G ) ( +g  `  G ) x ) )
1911simpld 447 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  ->  x  e.  ( Base `  G ) )
20 eqid 2437 . . . . . . . . . . . . . . . 16  |-  ( +g  `  G )  =  ( +g  `  G )
2113, 20, 14grplid 14836 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( ( 0g `  G ) ( +g  `  G ) x )  =  x )
2210, 19, 21syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( ( 0g `  G ) ( +g  `  G ) x )  =  x )
2318, 22eqtrd 2469 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( ( y (
-g `  G )
y ) ( +g  `  G ) x )  =  x )
24 tgptmd 18110 . . . . . . . . . . . . . . . . . 18  |-  ( G  e.  TopGrp  ->  G  e. TopMnd )
2524ad3antrrr 712 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  ->  G  e. TopMnd )
261, 13tgptopon 18113 . . . . . . . . . . . . . . . . . 18  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  ( Base `  G
) ) )
2726ad3antrrr 712 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  ->  J  e.  (TopOn `  ( Base `  G ) ) )
2827, 27, 12cnmptc 17695 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( a  e.  (
Base `  G )  |->  y )  e.  ( J  Cn  J ) )
2927cnmptid 17694 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( a  e.  (
Base `  G )  |->  a )  e.  ( J  Cn  J ) )
301, 15tgpsubcn 18121 . . . . . . . . . . . . . . . . . . 19  |-  ( G  e.  TopGrp  ->  ( -g `  G
)  e.  ( ( J  tX  J )  Cn  J ) )
3130ad3antrrr 712 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( -g `  G )  e.  ( ( J 
tX  J )  Cn  J ) )
3227, 28, 29, 31cnmpt12f 17699 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( a  e.  (
Base `  G )  |->  ( y ( -g `  G ) a ) )  e.  ( J  Cn  J ) )
3327, 27, 19cnmptc 17695 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( a  e.  (
Base `  G )  |->  x )  e.  ( J  Cn  J ) )
341, 20, 25, 27, 32, 33cnmpt1plusg 18118 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( a  e.  (
Base `  G )  |->  ( ( y (
-g `  G )
a ) ( +g  `  G ) x ) )  e.  ( J  Cn  J ) )
35 simprl 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
z  e.  J )
36 cnima 17330 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  (
Base `  G )  |->  ( ( y (
-g `  G )
a ) ( +g  `  G ) x ) )  e.  ( J  Cn  J )  /\  z  e.  J )  ->  ( `' ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  e.  J
)
3734, 35, 36syl2anc 644 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( `' ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  e.  J
)
38 simplr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  ->  A. w  e.  J  ( x  e.  w  ->  y  e.  w ) )
3913, 20, 15grpnpcan 14881 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  y  e.  ( Base `  G )  /\  x  e.  ( Base `  G
) )  ->  (
( y ( -g `  G ) x ) ( +g  `  G
) x )  =  y )
4010, 12, 19, 39syl3anc 1185 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( ( y (
-g `  G )
x ) ( +g  `  G ) x )  =  y )
41 simprr 735 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
y  e.  z )
4240, 41eqeltrd 2511 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( ( y (
-g `  G )
x ) ( +g  `  G ) x )  e.  z )
43 oveq2 6090 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  x  ->  (
y ( -g `  G
) a )  =  ( y ( -g `  G ) x ) )
4443oveq1d 6097 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  x  ->  (
( y ( -g `  G ) a ) ( +g  `  G
) x )  =  ( ( y (
-g `  G )
x ) ( +g  `  G ) x ) )
4544eleq1d 2503 . . . . . . . . . . . . . . . . 17  |-  ( a  =  x  ->  (
( ( y (
-g `  G )
a ) ( +g  `  G ) x )  e.  z  <->  ( (
y ( -g `  G
) x ) ( +g  `  G ) x )  e.  z ) )
46 eqid 2437 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) )  =  ( a  e.  (
Base `  G )  |->  ( ( y (
-g `  G )
a ) ( +g  `  G ) x ) )
4746mptpreima 5364 . . . . . . . . . . . . . . . . 17  |-  ( `' ( a  e.  (
Base `  G )  |->  ( ( y (
-g `  G )
a ) ( +g  `  G ) x ) ) " z )  =  { a  e.  ( Base `  G
)  |  ( ( y ( -g `  G
) a ) ( +g  `  G ) x )  e.  z }
4845, 47elrab2 3095 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( `' ( a  e.  ( Base `  G )  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  <->  ( x  e.  ( Base `  G
)  /\  ( (
y ( -g `  G
) x ) ( +g  `  G ) x )  e.  z ) )
4919, 42, 48sylanbrc 647 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  ->  x  e.  ( `' ( a  e.  (
Base `  G )  |->  ( ( y (
-g `  G )
a ) ( +g  `  G ) x ) ) " z ) )
50 eleq2 2498 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( `' ( a  e.  ( Base `  G )  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  ->  (
x  e.  w  <->  x  e.  ( `' ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z ) ) )
51 eleq2 2498 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( `' ( a  e.  ( Base `  G )  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  ->  (
y  e.  w  <->  y  e.  ( `' ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z ) ) )
5250, 51imbi12d 313 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( `' ( a  e.  ( Base `  G )  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  ->  (
( x  e.  w  ->  y  e.  w )  <-> 
( x  e.  ( `' ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  ->  y  e.  ( `' ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z ) ) ) )
5352rspcv 3049 . . . . . . . . . . . . . . 15  |-  ( ( `' ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  e.  J  ->  ( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  ->  (
x  e.  ( `' ( a  e.  (
Base `  G )  |->  ( ( y (
-g `  G )
a ) ( +g  `  G ) x ) ) " z )  ->  y  e.  ( `' ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z ) ) ) )
5437, 38, 49, 53syl3c 60 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
y  e.  ( `' ( a  e.  (
Base `  G )  |->  ( ( y (
-g `  G )
a ) ( +g  `  G ) x ) ) " z ) )
55 oveq2 6090 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  y  ->  (
y ( -g `  G
) a )  =  ( y ( -g `  G ) y ) )
5655oveq1d 6097 . . . . . . . . . . . . . . . . 17  |-  ( a  =  y  ->  (
( y ( -g `  G ) a ) ( +g  `  G
) x )  =  ( ( y (
-g `  G )
y ) ( +g  `  G ) x ) )
5756eleq1d 2503 . . . . . . . . . . . . . . . 16  |-  ( a  =  y  ->  (
( ( y (
-g `  G )
a ) ( +g  `  G ) x )  e.  z  <->  ( (
y ( -g `  G
) y ) ( +g  `  G ) x )  e.  z ) )
5857, 47elrab2 3095 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( `' ( a  e.  ( Base `  G )  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  <->  ( y  e.  ( Base `  G
)  /\  ( (
y ( -g `  G
) y ) ( +g  `  G ) x )  e.  z ) )
5958simprbi 452 . . . . . . . . . . . . . 14  |-  ( y  e.  ( `' ( a  e.  ( Base `  G )  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  ->  (
( y ( -g `  G ) y ) ( +g  `  G
) x )  e.  z )
6054, 59syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( ( y (
-g `  G )
y ) ( +g  `  G ) x )  e.  z )
6123, 60eqeltrrd 2512 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  ->  x  e.  z )
6261expr 600 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  z  e.  J )  ->  (
y  e.  z  ->  x  e.  z )
)
638, 62impbid 185 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  z  e.  J )  ->  (
x  e.  z  <->  y  e.  z ) )
6463ralrimiva 2790 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) ) )  /\  A. w  e.  J  ( x  e.  w  ->  y  e.  w ) )  ->  A. z  e.  J  ( x  e.  z  <->  y  e.  z ) )
6564ex 425 . . . . . . . 8  |-  ( ( G  e.  TopGrp  /\  (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) ) )  -> 
( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  ->  A. z  e.  J  ( x  e.  z  <->  y  e.  z ) ) )
6665imim1d 72 . . . . . . 7  |-  ( ( G  e.  TopGrp  /\  (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) ) )  -> 
( ( A. z  e.  J  ( x  e.  z  <->  y  e.  z )  ->  x  =  y )  ->  ( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  ->  x  =  y ) ) )
6766anassrs 631 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  x  e.  ( Base `  G ) )  /\  y  e.  ( Base `  G ) )  -> 
( ( A. z  e.  J  ( x  e.  z  <->  y  e.  z )  ->  x  =  y )  ->  ( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  ->  x  =  y ) ) )
6867ralimdva 2785 . . . . 5  |-  ( ( G  e.  TopGrp  /\  x  e.  ( Base `  G
) )  ->  ( A. y  e.  ( Base `  G ) ( A. z  e.  J  ( x  e.  z  <->  y  e.  z )  ->  x  =  y )  ->  A. y  e.  (
Base `  G )
( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  ->  x  =  y ) ) )
6968ralimdva 2785 . . . 4  |-  ( G  e.  TopGrp  ->  ( A. x  e.  ( Base `  G
) A. y  e.  ( Base `  G
) ( A. z  e.  J  ( x  e.  z  <->  y  e.  z )  ->  x  =  y )  ->  A. x  e.  ( Base `  G
) A. y  e.  ( Base `  G
) ( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  ->  x  =  y ) ) )
70 ist0-2 17409 . . . . 5  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  ( J  e. 
Kol2 
<-> 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( A. z  e.  J  ( x  e.  z  <->  y  e.  z )  ->  x  =  y )
) )
7126, 70syl 16 . . . 4  |-  ( G  e.  TopGrp  ->  ( J  e. 
Kol2 
<-> 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( A. z  e.  J  ( x  e.  z  <->  y  e.  z )  ->  x  =  y )
) )
72 ist1-2 17412 . . . . 5  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  ( J  e. 
Fre 
<-> 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  ->  x  =  y ) ) )
7326, 72syl 16 . . . 4  |-  ( G  e.  TopGrp  ->  ( J  e. 
Fre 
<-> 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  ->  x  =  y ) ) )
7469, 71, 733imtr4d 261 . . 3  |-  ( G  e.  TopGrp  ->  ( J  e. 
Kol2  ->  J  e.  Fre ) )
753, 74impbid2 197 . 2  |-  ( G  e.  TopGrp  ->  ( J  e. 
Fre 
<->  J  e.  Kol2 )
)
762, 75bitrd 246 1  |-  ( G  e.  TopGrp  ->  ( J  e. 
Haus 
<->  J  e.  Kol2 )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2706    e. cmpt 4267   `'ccnv 4878   "cima 4882   ` cfv 5455  (class class class)co 6082   Basecbs 13470   +g cplusg 13530   TopOpenctopn 13650   0gc0g 13724   Grpcgrp 14686   -gcsg 14689  TopOnctopon 16960    Cn ccn 17289   Kol2ct0 17371   Frect1 17372   Hauscha 17373    tX ctx 17593  TopMndctmd 18101   TopGrpctgp 18102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-riota 6550  df-map 7021  df-topgen 13668  df-0g 13728  df-mnd 14691  df-plusf 14692  df-grp 14813  df-minusg 14814  df-sbg 14815  df-top 16964  df-bases 16966  df-topon 16967  df-topsp 16968  df-cld 17084  df-cn 17292  df-cnp 17293  df-t0 17378  df-t1 17379  df-haus 17380  df-tx 17595  df-tmd 18103  df-tgp 18104
  Copyright terms: Public domain W3C validator