MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptsmscls Unicode version

Theorem tgptsmscls 18100
Description: A sum in a topological group is uniquely determined up to a coset of  cls ( { 0 } ), which is a normal subgroup by clsnsg 18060, 0nsg 14912. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
tgptsmscls.b  |-  B  =  ( Base `  G
)
tgptsmscls.j  |-  J  =  ( TopOpen `  G )
tgptsmscls.1  |-  ( ph  ->  G  e. CMnd )
tgptsmscls.2  |-  ( ph  ->  G  e.  TopGrp )
tgptsmscls.a  |-  ( ph  ->  A  e.  V )
tgptsmscls.f  |-  ( ph  ->  F : A --> B )
tgptsmscls.x  |-  ( ph  ->  X  e.  ( G tsums 
F ) )
Assertion
Ref Expression
tgptsmscls  |-  ( ph  ->  ( G tsums  F )  =  ( ( cls `  J ) `  { X } ) )

Proof of Theorem tgptsmscls
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgptsmscls.2 . . . . . . . . . 10  |-  ( ph  ->  G  e.  TopGrp )
21adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  G  e.  TopGrp )
3 tgpgrp 18029 . . . . . . . . . . 11  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
42, 3syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  G  e.  Grp )
5 eqid 2387 . . . . . . . . . . 11  |-  ( 0g
`  G )  =  ( 0g `  G
)
650subg 14892 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  { ( 0g `  G ) }  e.  (SubGrp `  G ) )
74, 6syl 16 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  { ( 0g
`  G ) }  e.  (SubGrp `  G
) )
8 tgptsmscls.j . . . . . . . . . 10  |-  J  =  ( TopOpen `  G )
98clssubg 18059 . . . . . . . . 9  |-  ( ( G  e.  TopGrp  /\  {
( 0g `  G
) }  e.  (SubGrp `  G ) )  -> 
( ( cls `  J
) `  { ( 0g `  G ) } )  e.  (SubGrp `  G ) )
102, 7, 9syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( ( cls `  J ) `  {
( 0g `  G
) } )  e.  (SubGrp `  G )
)
11 tgptsmscls.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
12 eqid 2387 . . . . . . . . 9  |-  ( G ~QG  ( ( cls `  J
) `  { ( 0g `  G ) } ) )  =  ( G ~QG  ( ( cls `  J
) `  { ( 0g `  G ) } ) )
1311, 12eqger 14917 . . . . . . . 8  |-  ( ( ( cls `  J
) `  { ( 0g `  G ) } )  e.  (SubGrp `  G )  ->  ( G ~QG  ( ( cls `  J
) `  { ( 0g `  G ) } ) )  Er  B
)
1410, 13syl 16 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( G ~QG  ( ( cls `  J ) `
 { ( 0g
`  G ) } ) )  Er  B
)
15 tgptsmscls.1 . . . . . . . . . 10  |-  ( ph  ->  G  e. CMnd )
16 tgptps 18031 . . . . . . . . . . 11  |-  ( G  e.  TopGrp  ->  G  e.  TopSp )
171, 16syl 16 . . . . . . . . . 10  |-  ( ph  ->  G  e.  TopSp )
18 tgptsmscls.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  V )
19 tgptsmscls.f . . . . . . . . . 10  |-  ( ph  ->  F : A --> B )
2011, 15, 17, 18, 19tsmscl 18085 . . . . . . . . 9  |-  ( ph  ->  ( G tsums  F ) 
C_  B )
2120sselda 3291 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  x  e.  B
)
22 tgptsmscls.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  ( G tsums 
F ) )
2320, 22sseldd 3292 . . . . . . . . 9  |-  ( ph  ->  X  e.  B )
2423adantr 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  X  e.  B
)
25 eqid 2387 . . . . . . . . . 10  |-  ( -g `  G )  =  (
-g `  G )
2615adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  G  e. CMnd )
2718adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  A  e.  V
)
2819adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  F : A --> B )
2922adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  X  e.  ( G tsums  F ) )
30 simpr 448 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  x  e.  ( G tsums  F ) )
3111, 25, 26, 2, 27, 28, 28, 29, 30tsmssub 18099 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( X (
-g `  G )
x )  e.  ( G tsums  ( F  o F ( -g `  G
) F ) ) )
3228ffvelrnda 5809 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( G tsums  F ) )  /\  k  e.  A )  ->  ( F `  k )  e.  B )
3328feqmptd 5718 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  F  =  ( k  e.  A  |->  ( F `  k ) ) )
3427, 32, 32, 33, 33offval2 6261 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( F  o F ( -g `  G
) F )  =  ( k  e.  A  |->  ( ( F `  k ) ( -g `  G ) ( F `
 k ) ) ) )
354adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( G tsums  F ) )  /\  k  e.  A )  ->  G  e.  Grp )
3611, 5, 25grpsubid 14800 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( F `  k )  e.  B )  -> 
( ( F `  k ) ( -g `  G ) ( F `
 k ) )  =  ( 0g `  G ) )
3735, 32, 36syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( G tsums  F ) )  /\  k  e.  A )  ->  (
( F `  k
) ( -g `  G
) ( F `  k ) )  =  ( 0g `  G
) )
3837mpteq2dva 4236 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( k  e.  A  |->  ( ( F `
 k ) (
-g `  G )
( F `  k
) ) )  =  ( k  e.  A  |->  ( 0g `  G
) ) )
3934, 38eqtrd 2419 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( F  o F ( -g `  G
) F )  =  ( k  e.  A  |->  ( 0g `  G
) ) )
4039oveq2d 6036 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( G tsums  ( F  o F ( -g `  G ) F ) )  =  ( G tsums 
( k  e.  A  |->  ( 0g `  G
) ) ) )
412, 16syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  G  e.  TopSp )
4211, 5grpidcl 14760 . . . . . . . . . . . . . 14  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
434, 42syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( 0g `  G )  e.  B
)
4443adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( G tsums  F ) )  /\  k  e.  A )  ->  ( 0g `  G )  e.  B )
45 eqid 2387 . . . . . . . . . . . 12  |-  ( k  e.  A  |->  ( 0g
`  G ) )  =  ( k  e.  A  |->  ( 0g `  G ) )
4644, 45fmptd 5832 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( k  e.  A  |->  ( 0g `  G ) ) : A --> B )
47 0fin 7272 . . . . . . . . . . . 12  |-  (/)  e.  Fin
48 eqidd 2388 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( G tsums  F ) )  /\  k  e.  ( A  \  (/) ) )  ->  ( 0g `  G )  =  ( 0g `  G ) )
4948suppss2 6239 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( `' ( k  e.  A  |->  ( 0g `  G ) ) " ( _V 
\  { ( 0g
`  G ) } ) )  C_  (/) )
50 ssfi 7265 . . . . . . . . . . . 12  |-  ( (
(/)  e.  Fin  /\  ( `' ( k  e.  A  |->  ( 0g `  G ) ) "
( _V  \  {
( 0g `  G
) } ) ) 
C_  (/) )  ->  ( `' ( k  e.  A  |->  ( 0g `  G ) ) "
( _V  \  {
( 0g `  G
) } ) )  e.  Fin )
5147, 49, 50sylancr 645 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( `' ( k  e.  A  |->  ( 0g `  G ) ) " ( _V 
\  { ( 0g
`  G ) } ) )  e.  Fin )
5211, 5, 26, 41, 27, 46, 51, 8tsmsgsum 18089 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( G tsums  (
k  e.  A  |->  ( 0g `  G ) ) )  =  ( ( cls `  J
) `  { ( G  gsumg  ( k  e.  A  |->  ( 0g `  G
) ) ) } ) )
53 cmnmnd 15354 . . . . . . . . . . . . . 14  |-  ( G  e. CMnd  ->  G  e.  Mnd )
5426, 53syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  G  e.  Mnd )
555gsumz 14708 . . . . . . . . . . . . 13  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( k  e.  A  |->  ( 0g `  G
) ) )  =  ( 0g `  G
) )
5654, 27, 55syl2anc 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( G  gsumg  ( k  e.  A  |->  ( 0g
`  G ) ) )  =  ( 0g
`  G ) )
5756sneqd 3770 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  { ( G 
gsumg  ( k  e.  A  |->  ( 0g `  G
) ) ) }  =  { ( 0g
`  G ) } )
5857fveq2d 5672 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( ( cls `  J ) `  {
( G  gsumg  ( k  e.  A  |->  ( 0g `  G
) ) ) } )  =  ( ( cls `  J ) `
 { ( 0g
`  G ) } ) )
5940, 52, 583eqtrd 2423 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( G tsums  ( F  o F ( -g `  G ) F ) )  =  ( ( cls `  J ) `
 { ( 0g
`  G ) } ) )
6031, 59eleqtrd 2463 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( X (
-g `  G )
x )  e.  ( ( cls `  J
) `  { ( 0g `  G ) } ) )
61 isabl 15343 . . . . . . . . . 10  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )
624, 26, 61sylanbrc 646 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  G  e.  Abel )
6311subgss 14872 . . . . . . . . . 10  |-  ( ( ( cls `  J
) `  { ( 0g `  G ) } )  e.  (SubGrp `  G )  ->  (
( cls `  J
) `  { ( 0g `  G ) } )  C_  B )
6410, 63syl 16 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( ( cls `  J ) `  {
( 0g `  G
) } )  C_  B )
6511, 25, 12eqgabl 15381 . . . . . . . . 9  |-  ( ( G  e.  Abel  /\  (
( cls `  J
) `  { ( 0g `  G ) } )  C_  B )  ->  ( x ( G ~QG  ( ( cls `  J
) `  { ( 0g `  G ) } ) ) X  <->  ( x  e.  B  /\  X  e.  B  /\  ( X ( -g `  G
) x )  e.  ( ( cls `  J
) `  { ( 0g `  G ) } ) ) ) )
6662, 64, 65syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  ( x ( G ~QG  ( ( cls `  J
) `  { ( 0g `  G ) } ) ) X  <->  ( x  e.  B  /\  X  e.  B  /\  ( X ( -g `  G
) x )  e.  ( ( cls `  J
) `  { ( 0g `  G ) } ) ) ) )
6721, 24, 60, 66mpbir3and 1137 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  x ( G ~QG  ( ( cls `  J
) `  { ( 0g `  G ) } ) ) X )
6814, 67ersym 6853 . . . . . 6  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  X ( G ~QG  ( ( cls `  J
) `  { ( 0g `  G ) } ) ) x )
6912releqg 14914 . . . . . . 7  |-  Rel  ( G ~QG  ( ( cls `  J
) `  { ( 0g `  G ) } ) )
70 relelec 6881 . . . . . . 7  |-  ( Rel  ( G ~QG  ( ( cls `  J
) `  { ( 0g `  G ) } ) )  ->  (
x  e.  [ X ] ( G ~QG  ( ( cls `  J ) `
 { ( 0g
`  G ) } ) )  <->  X ( G ~QG  ( ( cls `  J
) `  { ( 0g `  G ) } ) ) x ) )
7169, 70ax-mp 8 . . . . . 6  |-  ( x  e.  [ X ]
( G ~QG  ( ( cls `  J
) `  { ( 0g `  G ) } ) )  <->  X ( G ~QG  ( ( cls `  J
) `  { ( 0g `  G ) } ) ) x )
7268, 71sylibr 204 . . . . 5  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  x  e.  [ X ] ( G ~QG  ( ( cls `  J ) `
 { ( 0g
`  G ) } ) ) )
73 eqid 2387 . . . . . . 7  |-  ( ( cls `  J ) `
 { ( 0g
`  G ) } )  =  ( ( cls `  J ) `
 { ( 0g
`  G ) } )
7411, 8, 5, 12, 73snclseqg 18066 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  X  e.  B )  ->  [ X ] ( G ~QG  ( ( cls `  J ) `
 { ( 0g
`  G ) } ) )  =  ( ( cls `  J
) `  { X } ) )
752, 24, 74syl2anc 643 . . . . 5  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  [ X ]
( G ~QG  ( ( cls `  J
) `  { ( 0g `  G ) } ) )  =  ( ( cls `  J
) `  { X } ) )
7672, 75eleqtrd 2463 . . . 4  |-  ( (
ph  /\  x  e.  ( G tsums  F ) )  ->  x  e.  ( ( cls `  J
) `  { X } ) )
7776ex 424 . . 3  |-  ( ph  ->  ( x  e.  ( G tsums  F )  ->  x  e.  ( ( cls `  J ) `  { X } ) ) )
7877ssrdv 3297 . 2  |-  ( ph  ->  ( G tsums  F ) 
C_  ( ( cls `  J ) `  { X } ) )
7911, 8, 15, 17, 18, 19, 22tsmscls 18088 . 2  |-  ( ph  ->  ( ( cls `  J
) `  { X } )  C_  ( G tsums  F ) )
8078, 79eqssd 3308 1  |-  ( ph  ->  ( G tsums  F )  =  ( ( cls `  J ) `  { X } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   _Vcvv 2899    \ cdif 3260    C_ wss 3263   (/)c0 3571   {csn 3757   class class class wbr 4153    e. cmpt 4207   `'ccnv 4817   "cima 4821   Rel wrel 4823   -->wf 5390   ` cfv 5394  (class class class)co 6020    o Fcof 6242    Er wer 6838   [cec 6839   Fincfn 7045   Basecbs 13396   TopOpenctopn 13576   0gc0g 13650    gsumg cgsu 13651   Mndcmnd 14611   Grpcgrp 14612   -gcsg 14615  SubGrpcsubg 14865   ~QG cqg 14867  CMndccmn 15339   Abelcabel 15340   TopSpctps 16884   clsccl 17005   TopGrpctgp 18022   tsums ctsu 18076
This theorem is referenced by:  tgptsmscld  18101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-ec 6843  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-oi 7412  df-card 7759  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-n0 10154  df-z 10215  df-uz 10421  df-fz 10976  df-fzo 11066  df-seq 11251  df-hash 11546  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-topgen 13594  df-0g 13654  df-gsum 13655  df-mnd 14617  df-plusf 14618  df-mhm 14665  df-submnd 14666  df-grp 14739  df-minusg 14740  df-sbg 14741  df-subg 14868  df-eqg 14870  df-ghm 14931  df-cntz 15043  df-cmn 15341  df-abl 15342  df-fbas 16623  df-fg 16624  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-cld 17006  df-ntr 17007  df-cls 17008  df-nei 17085  df-cn 17213  df-cnp 17214  df-tx 17515  df-hmeo 17708  df-fil 17799  df-fm 17891  df-flim 17892  df-flf 17893  df-tmd 18023  df-tgp 18024  df-tsms 18077
  Copyright terms: Public domain W3C validator