MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgrest Unicode version

Theorem tgrest 16890
Description: A subspace can be generated by restricted sets from a basis for the original topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
tgrest  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( topGen `  ( Bt  A
) )  =  ( ( topGen `  B )t  A
) )

Proof of Theorem tgrest
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 5883 . . . . 5  |-  ( Bt  A )  e.  _V
2 eltg3 16700 . . . . 5  |-  ( ( Bt  A )  e.  _V  ->  ( x  e.  (
topGen `  ( Bt  A ) )  <->  E. y ( y 
C_  ( Bt  A )  /\  x  =  U. y ) ) )
31, 2ax-mp 8 . . . 4  |-  ( x  e.  ( topGen `  ( Bt  A ) )  <->  E. y
( y  C_  ( Bt  A )  /\  x  =  U. y ) )
4 simpll 730 . . . . . . . . 9  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  y  C_  ( Bt  A ) )  ->  B  e.  V )
5 funmpt 5290 . . . . . . . . . 10  |-  Fun  (
x  e.  B  |->  ( x  i^i  A ) )
65a1i 10 . . . . . . . . 9  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  y  C_  ( Bt  A ) )  ->  Fun  ( x  e.  B  |->  ( x  i^i  A
) ) )
7 restval 13331 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( Bt  A )  =  ran  ( x  e.  B  |->  ( x  i^i  A
) ) )
87sseq2d 3206 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( y  C_  ( Bt  A )  <->  y  C_  ran  ( x  e.  B  |->  ( x  i^i  A
) ) ) )
98biimpa 470 . . . . . . . . . 10  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  y  C_  ( Bt  A ) )  -> 
y  C_  ran  ( x  e.  B  |->  ( x  i^i  A ) ) )
10 vex 2791 . . . . . . . . . . . . 13  |-  x  e. 
_V
1110inex1 4155 . . . . . . . . . . . 12  |-  ( x  i^i  A )  e. 
_V
1211rgenw 2610 . . . . . . . . . . 11  |-  A. x  e.  B  ( x  i^i  A )  e.  _V
13 eqid 2283 . . . . . . . . . . . 12  |-  ( x  e.  B  |->  ( x  i^i  A ) )  =  ( x  e.  B  |->  ( x  i^i 
A ) )
1413fnmpt 5370 . . . . . . . . . . 11  |-  ( A. x  e.  B  (
x  i^i  A )  e.  _V  ->  ( x  e.  B  |->  ( x  i^i  A ) )  Fn  B )
15 fnima 5362 . . . . . . . . . . 11  |-  ( ( x  e.  B  |->  ( x  i^i  A ) )  Fn  B  -> 
( ( x  e.  B  |->  ( x  i^i 
A ) ) " B )  =  ran  ( x  e.  B  |->  ( x  i^i  A
) ) )
1612, 14, 15mp2b 9 . . . . . . . . . 10  |-  ( ( x  e.  B  |->  ( x  i^i  A ) ) " B )  =  ran  ( x  e.  B  |->  ( x  i^i  A ) )
179, 16syl6sseqr 3225 . . . . . . . . 9  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  y  C_  ( Bt  A ) )  -> 
y  C_  ( (
x  e.  B  |->  ( x  i^i  A ) ) " B ) )
18 ssimaexg 5585 . . . . . . . . 9  |-  ( ( B  e.  V  /\  Fun  ( x  e.  B  |->  ( x  i^i  A
) )  /\  y  C_  ( ( x  e.  B  |->  ( x  i^i 
A ) ) " B ) )  ->  E. z ( z  C_  B  /\  y  =  ( ( x  e.  B  |->  ( x  i^i  A
) ) " z
) ) )
194, 6, 17, 18syl3anc 1182 . . . . . . . 8  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  y  C_  ( Bt  A ) )  ->  E. z ( z  C_  B  /\  y  =  ( ( x  e.  B  |->  ( x  i^i  A
) ) " z
) ) )
20 df-ima 4702 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  B  |->  ( x  i^i  A ) ) " z )  =  ran  ( ( x  e.  B  |->  ( x  i^i  A ) )  |`  z )
21 resmpt 5000 . . . . . . . . . . . . . . . . . . 19  |-  ( z 
C_  B  ->  (
( x  e.  B  |->  ( x  i^i  A
) )  |`  z
)  =  ( x  e.  z  |->  ( x  i^i  A ) ) )
2221adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  (
( x  e.  B  |->  ( x  i^i  A
) )  |`  z
)  =  ( x  e.  z  |->  ( x  i^i  A ) ) )
2322rneqd 4906 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  ran  ( ( x  e.  B  |->  ( x  i^i 
A ) )  |`  z )  =  ran  ( x  e.  z  |->  ( x  i^i  A
) ) )
2420, 23syl5eq 2327 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  (
( x  e.  B  |->  ( x  i^i  A
) ) " z
)  =  ran  (
x  e.  z  |->  ( x  i^i  A ) ) )
2524unieqd 3838 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  U. (
( x  e.  B  |->  ( x  i^i  A
) ) " z
)  =  U. ran  ( x  e.  z  |->  ( x  i^i  A
) ) )
2611dfiun3 4933 . . . . . . . . . . . . . . 15  |-  U_ x  e.  z  ( x  i^i  A )  =  U. ran  ( x  e.  z 
|->  ( x  i^i  A
) )
2725, 26syl6eqr 2333 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  U. (
( x  e.  B  |->  ( x  i^i  A
) ) " z
)  =  U_ x  e.  z  ( x  i^i  A ) )
28 iunin1 3967 . . . . . . . . . . . . . 14  |-  U_ x  e.  z  ( x  i^i  A )  =  (
U_ x  e.  z  x  i^i  A )
2927, 28syl6eq 2331 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  U. (
( x  e.  B  |->  ( x  i^i  A
) ) " z
)  =  ( U_ x  e.  z  x  i^i  A ) )
30 fvex 5539 . . . . . . . . . . . . . . 15  |-  ( topGen `  B )  e.  _V
3130a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  ( topGen `
 B )  e. 
_V )
32 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  V  /\  A  e.  W )  ->  A  e.  W )
3332adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  A  e.  W )
34 uniiun 3955 . . . . . . . . . . . . . . . 16  |-  U. z  =  U_ x  e.  z  x
35 eltg3i 16699 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  V  /\  z  C_  B )  ->  U. z  e.  ( topGen `
 B ) )
3634, 35syl5eqelr 2368 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  V  /\  z  C_  B )  ->  U_ x  e.  z  x  e.  ( topGen `  B ) )
3736adantlr 695 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  U_ x  e.  z  x  e.  ( topGen `  B )
)
38 elrestr 13333 . . . . . . . . . . . . . 14  |-  ( ( ( topGen `  B )  e.  _V  /\  A  e.  W  /\  U_ x  e.  z  x  e.  ( topGen `  B )
)  ->  ( U_ x  e.  z  x  i^i  A )  e.  ( ( topGen `  B )t  A
) )
3931, 33, 37, 38syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  ( U_ x  e.  z  x  i^i  A )  e.  ( ( topGen `  B
)t 
A ) )
4029, 39eqeltrd 2357 . . . . . . . . . . . 12  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  U. (
( x  e.  B  |->  ( x  i^i  A
) ) " z
)  e.  ( (
topGen `  B )t  A ) )
41 unieq 3836 . . . . . . . . . . . . 13  |-  ( y  =  ( ( x  e.  B  |->  ( x  i^i  A ) )
" z )  ->  U. y  =  U. ( ( x  e.  B  |->  ( x  i^i 
A ) ) "
z ) )
4241eleq1d 2349 . . . . . . . . . . . 12  |-  ( y  =  ( ( x  e.  B  |->  ( x  i^i  A ) )
" z )  -> 
( U. y  e.  ( ( topGen `  B
)t 
A )  <->  U. (
( x  e.  B  |->  ( x  i^i  A
) ) " z
)  e.  ( (
topGen `  B )t  A ) ) )
4340, 42syl5ibrcom 213 . . . . . . . . . . 11  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  (
y  =  ( ( x  e.  B  |->  ( x  i^i  A ) ) " z )  ->  U. y  e.  ( ( topGen `  B )t  A
) ) )
4443expimpd 586 . . . . . . . . . 10  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( ( z  C_  B  /\  y  =  ( ( x  e.  B  |->  ( x  i^i  A
) ) " z
) )  ->  U. y  e.  ( ( topGen `  B
)t 
A ) ) )
4544exlimdv 1664 . . . . . . . . 9  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( E. z ( z  C_  B  /\  y  =  ( (
x  e.  B  |->  ( x  i^i  A ) ) " z ) )  ->  U. y  e.  ( ( topGen `  B
)t 
A ) ) )
4645adantr 451 . . . . . . . 8  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  y  C_  ( Bt  A ) )  -> 
( E. z ( z  C_  B  /\  y  =  ( (
x  e.  B  |->  ( x  i^i  A ) ) " z ) )  ->  U. y  e.  ( ( topGen `  B
)t 
A ) ) )
4719, 46mpd 14 . . . . . . 7  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  y  C_  ( Bt  A ) )  ->  U. y  e.  (
( topGen `  B )t  A
) )
48 eleq1 2343 . . . . . . 7  |-  ( x  =  U. y  -> 
( x  e.  ( ( topGen `  B )t  A
)  <->  U. y  e.  ( ( topGen `  B )t  A
) ) )
4947, 48syl5ibrcom 213 . . . . . 6  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  y  C_  ( Bt  A ) )  -> 
( x  =  U. y  ->  x  e.  ( ( topGen `  B )t  A
) ) )
5049expimpd 586 . . . . 5  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( ( y  C_  ( Bt  A )  /\  x  =  U. y )  ->  x  e.  ( ( topGen `
 B )t  A ) ) )
5150exlimdv 1664 . . . 4  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( E. y ( y  C_  ( Bt  A
)  /\  x  =  U. y )  ->  x  e.  ( ( topGen `  B
)t 
A ) ) )
523, 51syl5bi 208 . . 3  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( x  e.  (
topGen `  ( Bt  A ) )  ->  x  e.  ( ( topGen `  B
)t 
A ) ) )
5352ssrdv 3185 . 2  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( topGen `  ( Bt  A
) )  C_  (
( topGen `  B )t  A
) )
54 restval 13331 . . . 4  |-  ( ( ( topGen `  B )  e.  _V  /\  A  e.  W )  ->  (
( topGen `  B )t  A
)  =  ran  (
w  e.  ( topGen `  B )  |->  ( w  i^i  A ) ) )
5530, 32, 54sylancr 644 . . 3  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( ( topGen `  B
)t 
A )  =  ran  ( w  e.  ( topGen `
 B )  |->  ( w  i^i  A ) ) )
56 eltg3 16700 . . . . . . . 8  |-  ( B  e.  V  ->  (
w  e.  ( topGen `  B )  <->  E. z
( z  C_  B  /\  w  =  U. z ) ) )
5756adantr 451 . . . . . . 7  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( w  e.  (
topGen `  B )  <->  E. z
( z  C_  B  /\  w  =  U. z ) ) )
5834ineq1i 3366 . . . . . . . . . . . 12  |-  ( U. z  i^i  A )  =  ( U_ x  e.  z  x  i^i  A
)
5958, 28eqtr4i 2306 . . . . . . . . . . 11  |-  ( U. z  i^i  A )  = 
U_ x  e.  z  ( x  i^i  A
)
60 simplll 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  V  /\  A  e.  W )  /\  z  C_  B )  /\  x  e.  z )  ->  B  e.  V )
61 simpllr 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  V  /\  A  e.  W )  /\  z  C_  B )  /\  x  e.  z )  ->  A  e.  W )
62 simpr 447 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  z  C_  B )
6362sselda 3180 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  V  /\  A  e.  W )  /\  z  C_  B )  /\  x  e.  z )  ->  x  e.  B )
64 elrestr 13333 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  V  /\  A  e.  W  /\  x  e.  B )  ->  ( x  i^i  A
)  e.  ( Bt  A ) )
6560, 61, 63, 64syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  V  /\  A  e.  W )  /\  z  C_  B )  /\  x  e.  z )  ->  (
x  i^i  A )  e.  ( Bt  A ) )
66 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( x  e.  z  |->  ( x  i^i  A ) )  =  ( x  e.  z  |->  ( x  i^i 
A ) )
6765, 66fmptd 5684 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  (
x  e.  z  |->  ( x  i^i  A ) ) : z --> ( Bt  A ) )
68 frn 5395 . . . . . . . . . . . . . 14  |-  ( ( x  e.  z  |->  ( x  i^i  A ) ) : z --> ( Bt  A )  ->  ran  ( x  e.  z  |->  ( x  i^i  A
) )  C_  ( Bt  A ) )
6967, 68syl 15 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  ran  ( x  e.  z  |->  ( x  i^i  A
) )  C_  ( Bt  A ) )
70 eltg3i 16699 . . . . . . . . . . . . 13  |-  ( ( ( Bt  A )  e.  _V  /\ 
ran  ( x  e.  z  |->  ( x  i^i 
A ) )  C_  ( Bt  A ) )  ->  U. ran  ( x  e.  z  |->  ( x  i^i 
A ) )  e.  ( topGen `  ( Bt  A
) ) )
711, 69, 70sylancr 644 . . . . . . . . . . . 12  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  U. ran  ( x  e.  z  |->  ( x  i^i  A
) )  e.  (
topGen `  ( Bt  A ) ) )
7226, 71syl5eqel 2367 . . . . . . . . . . 11  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  U_ x  e.  z  ( x  i^i  A )  e.  (
topGen `  ( Bt  A ) ) )
7359, 72syl5eqel 2367 . . . . . . . . . 10  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  ( U. z  i^i  A )  e.  ( topGen `  ( Bt  A ) ) )
74 ineq1 3363 . . . . . . . . . . 11  |-  ( w  =  U. z  -> 
( w  i^i  A
)  =  ( U. z  i^i  A ) )
7574eleq1d 2349 . . . . . . . . . 10  |-  ( w  =  U. z  -> 
( ( w  i^i 
A )  e.  (
topGen `  ( Bt  A ) )  <->  ( U. z  i^i  A )  e.  (
topGen `  ( Bt  A ) ) ) )
7673, 75syl5ibrcom 213 . . . . . . . . 9  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  (
w  =  U. z  ->  ( w  i^i  A
)  e.  ( topGen `  ( Bt  A ) ) ) )
7776expimpd 586 . . . . . . . 8  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( ( z  C_  B  /\  w  =  U. z )  ->  (
w  i^i  A )  e.  ( topGen `  ( Bt  A
) ) ) )
7877exlimdv 1664 . . . . . . 7  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( E. z ( z  C_  B  /\  w  =  U. z
)  ->  ( w  i^i  A )  e.  (
topGen `  ( Bt  A ) ) ) )
7957, 78sylbid 206 . . . . . 6  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( w  e.  (
topGen `  B )  -> 
( w  i^i  A
)  e.  ( topGen `  ( Bt  A ) ) ) )
8079imp 418 . . . . 5  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  w  e.  ( topGen `  B )
)  ->  ( w  i^i  A )  e.  (
topGen `  ( Bt  A ) ) )
81 eqid 2283 . . . . 5  |-  ( w  e.  ( topGen `  B
)  |->  ( w  i^i 
A ) )  =  ( w  e.  (
topGen `  B )  |->  ( w  i^i  A ) )
8280, 81fmptd 5684 . . . 4  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( w  e.  (
topGen `  B )  |->  ( w  i^i  A ) ) : ( topGen `  B ) --> ( topGen `  ( Bt  A ) ) )
83 frn 5395 . . . 4  |-  ( ( w  e.  ( topGen `  B )  |->  ( w  i^i  A ) ) : ( topGen `  B
) --> ( topGen `  ( Bt  A ) )  ->  ran  ( w  e.  (
topGen `  B )  |->  ( w  i^i  A ) )  C_  ( topGen `  ( Bt  A ) ) )
8482, 83syl 15 . . 3  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ran  ( w  e.  ( topGen `  B )  |->  ( w  i^i  A
) )  C_  ( topGen `
 ( Bt  A ) ) )
8555, 84eqsstrd 3212 . 2  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( ( topGen `  B
)t 
A )  C_  ( topGen `
 ( Bt  A ) ) )
8653, 85eqssd 3196 1  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( topGen `  ( Bt  A
) )  =  ( ( topGen `  B )t  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    i^i cin 3151    C_ wss 3152   U.cuni 3827   U_ciun 3905    e. cmpt 4077   ran crn 4690    |` cres 4691   "cima 4692   Fun wfun 5249    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   ↾t crest 13325   topGenctg 13342
This theorem is referenced by:  resttop  16891  ordtrest2  16934  2ndcrest  17180  txrest  17325  xkoptsub  17348  xrtgioo  18312
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-rest 13327  df-topgen 13344
  Copyright terms: Public domain W3C validator