Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpset Unicode version

Theorem tgrpset 31556
Description: The translation group for a fiducial co-atom  W. (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
tgrpset.h  |-  H  =  ( LHyp `  K
)
tgrpset.t  |-  T  =  ( ( LTrn `  K
) `  W )
tgrpset.g  |-  G  =  ( ( TGrp `  K
) `  W )
Assertion
Ref Expression
tgrpset  |-  ( ( K  e.  V  /\  W  e.  H )  ->  G  =  { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. } )
Distinct variable groups:    f, g, K    T, f, g    f, W, g
Allowed substitution hints:    G( f, g)    H( f, g)    V( f, g)

Proof of Theorem tgrpset
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 tgrpset.g . 2  |-  G  =  ( ( TGrp `  K
) `  W )
2 tgrpset.h . . . . 5  |-  H  =  ( LHyp `  K
)
32tgrpfset 31555 . . . 4  |-  ( K  e.  V  ->  ( TGrp `  K )  =  ( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } ) )
43fveq1d 5543 . . 3  |-  ( K  e.  V  ->  (
( TGrp `  K ) `  W )  =  ( ( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } ) `  W
) )
5 fveq2 5541 . . . . . . 7  |-  ( w  =  W  ->  (
( LTrn `  K ) `  w )  =  ( ( LTrn `  K
) `  W )
)
65opeq2d 3819 . . . . . 6  |-  ( w  =  W  ->  <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >.  =  <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. )
7 eqidd 2297 . . . . . . . 8  |-  ( w  =  W  ->  (
f  o.  g )  =  ( f  o.  g ) )
85, 5, 7mpt2eq123dv 5926 . . . . . . 7  |-  ( w  =  W  ->  (
f  e.  ( (
LTrn `  K ) `  w ) ,  g  e.  ( ( LTrn `  K ) `  w
)  |->  ( f  o.  g ) )  =  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) ) )
98opeq2d 3819 . . . . . 6  |-  ( w  =  W  ->  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>.  =  <. ( +g  ` 
ndx ) ,  ( f  e.  ( (
LTrn `  K ) `  W ) ,  g  e.  ( ( LTrn `  K ) `  W
)  |->  ( f  o.  g ) ) >.
)
106, 9preq12d 3727 . . . . 5  |-  ( w  =  W  ->  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. }  =  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. } )
11 eqid 2296 . . . . 5  |-  ( w  e.  H  |->  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } )  =  ( w  e.  H  |->  {
<. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } )
12 prex 4233 . . . . 5  |-  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. }  e.  _V
1310, 11, 12fvmpt 5618 . . . 4  |-  ( W  e.  H  ->  (
( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } ) `  W
)  =  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. } )
14 tgrpset.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
1514opeq2i 3816 . . . . 5  |-  <. ( Base `  ndx ) ,  T >.  =  <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  W ) >.
16 eqid 2296 . . . . . . 7  |-  ( f  o.  g )  =  ( f  o.  g
)
1714, 14, 16mpt2eq123i 5927 . . . . . 6  |-  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) )  =  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
1817opeq2i 3816 . . . . 5  |-  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >.  =  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>.
1915, 18preq12i 3724 . . . 4  |-  { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. }  =  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. }
2013, 19syl6eqr 2346 . . 3  |-  ( W  e.  H  ->  (
( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } ) `  W
)  =  { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. } )
214, 20sylan9eq 2348 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( ( TGrp `  K
) `  W )  =  { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. } )
221, 21syl5eq 2340 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  G  =  { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   {cpr 3654   <.cop 3656    e. cmpt 4093    o. ccom 4709   ` cfv 5271    e. cmpt2 5876   ndxcnx 13161   Basecbs 13164   +g cplusg 13224   LHypclh 30795   LTrncltrn 30912   TGrpctgrp 31553
This theorem is referenced by:  tgrpbase  31557  tgrpopr  31558  dvaabl  31836
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-oprab 5878  df-mpt2 5879  df-tgrp 31554
  Copyright terms: Public domain W3C validator