Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpset Unicode version

Theorem tgrpset 30934
Description: The translation group for a fiducial co-atom  W. (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
tgrpset.h  |-  H  =  ( LHyp `  K
)
tgrpset.t  |-  T  =  ( ( LTrn `  K
) `  W )
tgrpset.g  |-  G  =  ( ( TGrp `  K
) `  W )
Assertion
Ref Expression
tgrpset  |-  ( ( K  e.  V  /\  W  e.  H )  ->  G  =  { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. } )
Distinct variable groups:    f, g, K    T, f, g    f, W, g
Allowed substitution hints:    G( f, g)    H( f, g)    V( f, g)

Proof of Theorem tgrpset
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 tgrpset.g . 2  |-  G  =  ( ( TGrp `  K
) `  W )
2 tgrpset.h . . . . 5  |-  H  =  ( LHyp `  K
)
32tgrpfset 30933 . . . 4  |-  ( K  e.  V  ->  ( TGrp `  K )  =  ( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } ) )
43fveq1d 5527 . . 3  |-  ( K  e.  V  ->  (
( TGrp `  K ) `  W )  =  ( ( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } ) `  W
) )
5 fveq2 5525 . . . . . . 7  |-  ( w  =  W  ->  (
( LTrn `  K ) `  w )  =  ( ( LTrn `  K
) `  W )
)
65opeq2d 3803 . . . . . 6  |-  ( w  =  W  ->  <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >.  =  <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. )
7 eqidd 2284 . . . . . . . 8  |-  ( w  =  W  ->  (
f  o.  g )  =  ( f  o.  g ) )
85, 5, 7mpt2eq123dv 5910 . . . . . . 7  |-  ( w  =  W  ->  (
f  e.  ( (
LTrn `  K ) `  w ) ,  g  e.  ( ( LTrn `  K ) `  w
)  |->  ( f  o.  g ) )  =  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) ) )
98opeq2d 3803 . . . . . 6  |-  ( w  =  W  ->  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>.  =  <. ( +g  ` 
ndx ) ,  ( f  e.  ( (
LTrn `  K ) `  W ) ,  g  e.  ( ( LTrn `  K ) `  W
)  |->  ( f  o.  g ) ) >.
)
106, 9preq12d 3714 . . . . 5  |-  ( w  =  W  ->  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. }  =  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. } )
11 eqid 2283 . . . . 5  |-  ( w  e.  H  |->  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } )  =  ( w  e.  H  |->  {
<. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } )
12 prex 4217 . . . . 5  |-  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. }  e.  _V
1310, 11, 12fvmpt 5602 . . . 4  |-  ( W  e.  H  ->  (
( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } ) `  W
)  =  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. } )
14 tgrpset.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
1514opeq2i 3800 . . . . 5  |-  <. ( Base `  ndx ) ,  T >.  =  <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  W ) >.
16 eqid 2283 . . . . . . 7  |-  ( f  o.  g )  =  ( f  o.  g
)
1714, 14, 16mpt2eq123i 5911 . . . . . 6  |-  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) )  =  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
1817opeq2i 3800 . . . . 5  |-  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >.  =  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>.
1915, 18preq12i 3711 . . . 4  |-  { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. }  =  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. }
2013, 19syl6eqr 2333 . . 3  |-  ( W  e.  H  ->  (
( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } ) `  W
)  =  { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. } )
214, 20sylan9eq 2335 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( ( TGrp `  K
) `  W )  =  { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. } )
221, 21syl5eq 2327 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  G  =  { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   {cpr 3641   <.cop 3643    e. cmpt 4077    o. ccom 4693   ` cfv 5255    e. cmpt2 5860   ndxcnx 13145   Basecbs 13148   +g cplusg 13208   LHypclh 30173   LTrncltrn 30290   TGrpctgrp 30931
This theorem is referenced by:  tgrpbase  30935  tgrpopr  30936  dvaabl  31214
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-oprab 5862  df-mpt2 5863  df-tgrp 30932
  Copyright terms: Public domain W3C validator