MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgtop Structured version   Unicode version

Theorem tgtop 17038
Description: A topology is its own basis. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
tgtop  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )

Proof of Theorem tgtop
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltg3 17027 . . . 4  |-  ( J  e.  Top  ->  (
x  e.  ( topGen `  J )  <->  E. y
( y  C_  J  /\  x  =  U. y ) ) )
2 simpr 448 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  x  =  U. y )  ->  x  =  U. y )
3 uniopn 16970 . . . . . . . 8  |-  ( ( J  e.  Top  /\  y  C_  J )  ->  U. y  e.  J
)
43adantr 452 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  x  =  U. y )  ->  U. y  e.  J )
52, 4eqeltrd 2510 . . . . . 6  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  x  =  U. y )  ->  x  e.  J )
65expl 602 . . . . 5  |-  ( J  e.  Top  ->  (
( y  C_  J  /\  x  =  U. y )  ->  x  e.  J ) )
76exlimdv 1646 . . . 4  |-  ( J  e.  Top  ->  ( E. y ( y  C_  J  /\  x  =  U. y )  ->  x  e.  J ) )
81, 7sylbid 207 . . 3  |-  ( J  e.  Top  ->  (
x  e.  ( topGen `  J )  ->  x  e.  J ) )
98ssrdv 3354 . 2  |-  ( J  e.  Top  ->  ( topGen `
 J )  C_  J )
10 bastg 17031 . 2  |-  ( J  e.  Top  ->  J  C_  ( topGen `  J )
)
119, 10eqssd 3365 1  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725    C_ wss 3320   U.cuni 4015   ` cfv 5454   topGenctg 13665   Topctop 16958
This theorem is referenced by:  eltop  17039  eltop2  17040  eltop3  17041  bastop  17046  tgtop11  17047  basgen  17053  tgfiss  17056  bastop1  17058  resttop  17224  dis1stc  17562  alexsubALTlem1  18078  xrtgioo  18837  topfne  26370  topfneec  26371  topfneec2  26372
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-iota 5418  df-fun 5456  df-fv 5462  df-topgen 13667  df-top 16963
  Copyright terms: Public domain W3C validator