MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdgsum Unicode version

Theorem tmdgsum 17794
Description: In a topological monoid, the group sum operation is a continuous function from the function space to the base topology. This theorem is not true when  A is infinite, because in this case for any basic open set of the domain one of the factors will be the whole space, so by varying the value of the functions to sum at this index, one can achieve any desired sum. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
tmdgsum.j  |-  J  =  ( TopOpen `  G )
tmdgsum.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
tmdgsum  |-  ( ( G  e. CMnd  /\  G  e. TopMnd  /\  A  e.  Fin )  ->  ( x  e.  ( B  ^m  A
)  |->  ( G  gsumg  x ) )  e.  ( ( J  ^ k o  ~P A )  Cn  J ) )
Distinct variable groups:    x, A    x, J    x, B    x, G

Proof of Theorem tmdgsum
Dummy variables  k  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5882 . . . . . . . 8  |-  ( w  =  (/)  ->  ( B  ^m  w )  =  ( B  ^m  (/) ) )
2 mpteq1 4116 . . . . . . . 8  |-  ( ( B  ^m  w )  =  ( B  ^m  (/) )  ->  ( x  e.  ( B  ^m  w
)  |->  ( G  gsumg  x ) )  =  ( x  e.  ( B  ^m  (/) )  |->  ( G  gsumg  x ) ) )
31, 2syl 15 . . . . . . 7  |-  ( w  =  (/)  ->  ( x  e.  ( B  ^m  w )  |->  ( G 
gsumg  x ) )  =  ( x  e.  ( B  ^m  (/) )  |->  ( G  gsumg  x ) ) )
4 xpeq1 4719 . . . . . . . . . 10  |-  ( w  =  (/)  ->  ( w  X.  { J }
)  =  ( (/)  X. 
{ J } ) )
5 xp0r 4784 . . . . . . . . . 10  |-  ( (/)  X. 
{ J } )  =  (/)
64, 5syl6eq 2344 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( w  X.  { J }
)  =  (/) )
76fveq2d 5545 . . . . . . . 8  |-  ( w  =  (/)  ->  ( Xt_ `  ( w  X.  { J } ) )  =  ( Xt_ `  (/) ) )
87oveq1d 5889 . . . . . . 7  |-  ( w  =  (/)  ->  ( (
Xt_ `  ( w  X.  { J } ) )  Cn  J )  =  ( ( Xt_ `  (/) )  Cn  J
) )
93, 8eleq12d 2364 . . . . . 6  |-  ( w  =  (/)  ->  ( ( x  e.  ( B  ^m  w )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
w  X.  { J } ) )  Cn  J )  <->  ( x  e.  ( B  ^m  (/) )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (/) )  Cn  J ) ) )
109imbi2d 307 . . . . 5  |-  ( w  =  (/)  ->  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  ( x  e.  ( B  ^m  w )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
w  X.  { J } ) )  Cn  J ) )  <->  ( ( G  e. CMnd  /\  G  e. TopMnd
)  ->  ( x  e.  ( B  ^m  (/) )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (/) )  Cn  J ) ) ) )
11 oveq2 5882 . . . . . . . 8  |-  ( w  =  y  ->  ( B  ^m  w )  =  ( B  ^m  y
) )
12 mpteq1 4116 . . . . . . . 8  |-  ( ( B  ^m  w )  =  ( B  ^m  y )  ->  (
x  e.  ( B  ^m  w )  |->  ( G  gsumg  x ) )  =  ( x  e.  ( B  ^m  y ) 
|->  ( G  gsumg  x ) ) )
1311, 12syl 15 . . . . . . 7  |-  ( w  =  y  ->  (
x  e.  ( B  ^m  w )  |->  ( G  gsumg  x ) )  =  ( x  e.  ( B  ^m  y ) 
|->  ( G  gsumg  x ) ) )
14 xpeq1 4719 . . . . . . . . 9  |-  ( w  =  y  ->  (
w  X.  { J } )  =  ( y  X.  { J } ) )
1514fveq2d 5545 . . . . . . . 8  |-  ( w  =  y  ->  ( Xt_ `  ( w  X.  { J } ) )  =  ( Xt_ `  (
y  X.  { J } ) ) )
1615oveq1d 5889 . . . . . . 7  |-  ( w  =  y  ->  (
( Xt_ `  ( w  X.  { J }
) )  Cn  J
)  =  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )
1713, 16eleq12d 2364 . . . . . 6  |-  ( w  =  y  ->  (
( x  e.  ( B  ^m  w ) 
|->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
w  X.  { J } ) )  Cn  J )  <->  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) ) )
1817imbi2d 307 . . . . 5  |-  ( w  =  y  ->  (
( ( G  e. CMnd  /\  G  e. TopMnd )  -> 
( x  e.  ( B  ^m  w ) 
|->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
w  X.  { J } ) )  Cn  J ) )  <->  ( ( G  e. CMnd  /\  G  e. TopMnd
)  ->  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) ) ) )
19 oveq2 5882 . . . . . . . 8  |-  ( w  =  ( y  u. 
{ z } )  ->  ( B  ^m  w )  =  ( B  ^m  ( y  u.  { z } ) ) )
20 mpteq1 4116 . . . . . . . 8  |-  ( ( B  ^m  w )  =  ( B  ^m  ( y  u.  {
z } ) )  ->  ( x  e.  ( B  ^m  w
)  |->  ( G  gsumg  x ) )  =  ( x  e.  ( B  ^m  ( y  u.  {
z } ) ) 
|->  ( G  gsumg  x ) ) )
2119, 20syl 15 . . . . . . 7  |-  ( w  =  ( y  u. 
{ z } )  ->  ( x  e.  ( B  ^m  w
)  |->  ( G  gsumg  x ) )  =  ( x  e.  ( B  ^m  ( y  u.  {
z } ) ) 
|->  ( G  gsumg  x ) ) )
22 xpeq1 4719 . . . . . . . . 9  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  X.  { J } )  =  ( ( y  u. 
{ z } )  X.  { J }
) )
2322fveq2d 5545 . . . . . . . 8  |-  ( w  =  ( y  u. 
{ z } )  ->  ( Xt_ `  (
w  X.  { J } ) )  =  ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) ) )
2423oveq1d 5889 . . . . . . 7  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( Xt_ `  ( w  X.  { J } ) )  Cn  J )  =  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  J ) )
2521, 24eleq12d 2364 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( x  e.  ( B  ^m  w )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
w  X.  { J } ) )  Cn  J )  <->  ( x  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  J ) ) )
2625imbi2d 307 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  ( x  e.  ( B  ^m  w
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( w  X.  { J } ) )  Cn  J ) )  <->  ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  ( x  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  J ) ) ) )
27 oveq2 5882 . . . . . . . 8  |-  ( w  =  A  ->  ( B  ^m  w )  =  ( B  ^m  A
) )
28 mpteq1 4116 . . . . . . . 8  |-  ( ( B  ^m  w )  =  ( B  ^m  A )  ->  (
x  e.  ( B  ^m  w )  |->  ( G  gsumg  x ) )  =  ( x  e.  ( B  ^m  A ) 
|->  ( G  gsumg  x ) ) )
2927, 28syl 15 . . . . . . 7  |-  ( w  =  A  ->  (
x  e.  ( B  ^m  w )  |->  ( G  gsumg  x ) )  =  ( x  e.  ( B  ^m  A ) 
|->  ( G  gsumg  x ) ) )
30 xpeq1 4719 . . . . . . . . 9  |-  ( w  =  A  ->  (
w  X.  { J } )  =  ( A  X.  { J } ) )
3130fveq2d 5545 . . . . . . . 8  |-  ( w  =  A  ->  ( Xt_ `  ( w  X.  { J } ) )  =  ( Xt_ `  ( A  X.  { J }
) ) )
3231oveq1d 5889 . . . . . . 7  |-  ( w  =  A  ->  (
( Xt_ `  ( w  X.  { J }
) )  Cn  J
)  =  ( (
Xt_ `  ( A  X.  { J } ) )  Cn  J ) )
3329, 32eleq12d 2364 . . . . . 6  |-  ( w  =  A  ->  (
( x  e.  ( B  ^m  w ) 
|->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
w  X.  { J } ) )  Cn  J )  <->  ( x  e.  ( B  ^m  A
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( A  X.  { J } ) )  Cn  J ) ) )
3433imbi2d 307 . . . . 5  |-  ( w  =  A  ->  (
( ( G  e. CMnd  /\  G  e. TopMnd )  -> 
( x  e.  ( B  ^m  w ) 
|->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
w  X.  { J } ) )  Cn  J ) )  <->  ( ( G  e. CMnd  /\  G  e. TopMnd
)  ->  ( x  e.  ( B  ^m  A
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( A  X.  { J } ) )  Cn  J ) ) ) )
35 elmapi 6808 . . . . . . . . . . 11  |-  ( x  e.  ( B  ^m  (/) )  ->  x : (/) --> B )
36 ffn 5405 . . . . . . . . . . 11  |-  ( x : (/) --> B  ->  x  Fn  (/) )
3735, 36syl 15 . . . . . . . . . 10  |-  ( x  e.  ( B  ^m  (/) )  ->  x  Fn  (/) )
38 fn0 5379 . . . . . . . . . 10  |-  ( x  Fn  (/)  <->  x  =  (/) )
3937, 38sylib 188 . . . . . . . . 9  |-  ( x  e.  ( B  ^m  (/) )  ->  x  =  (/) )
4039oveq2d 5890 . . . . . . . 8  |-  ( x  e.  ( B  ^m  (/) )  ->  ( G  gsumg  x )  =  ( G 
gsumg  (/) ) )
41 eqid 2296 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
4241gsum0 14473 . . . . . . . 8  |-  ( G 
gsumg  (/) )  =  ( 0g
`  G )
4340, 42syl6eq 2344 . . . . . . 7  |-  ( x  e.  ( B  ^m  (/) )  ->  ( G  gsumg  x )  =  ( 0g
`  G ) )
4443mpteq2ia 4118 . . . . . 6  |-  ( x  e.  ( B  ^m  (/) )  |->  ( G  gsumg  x ) )  =  ( x  e.  ( B  ^m  (/) )  |->  ( 0g `  G ) )
45 0ex 4166 . . . . . . . 8  |-  (/)  e.  _V
46 tmdgsum.j . . . . . . . . . 10  |-  J  =  ( TopOpen `  G )
47 tmdgsum.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
4846, 47tmdtopon 17780 . . . . . . . . 9  |-  ( G  e. TopMnd  ->  J  e.  (TopOn `  B ) )
4948adantl 452 . . . . . . . 8  |-  ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  J  e.  (TopOn `  B ) )
505fveq2i 5544 . . . . . . . . . 10  |-  ( Xt_ `  ( (/)  X.  { J } ) )  =  ( Xt_ `  (/) )
5150eqcomi 2300 . . . . . . . . 9  |-  ( Xt_ `  (/) )  =  ( Xt_ `  ( (/)  X.  { J } ) )
5251pttoponconst 17308 . . . . . . . 8  |-  ( (
(/)  e.  _V  /\  J  e.  (TopOn `  B )
)  ->  ( Xt_ `  (/) )  e.  (TopOn `  ( B  ^m  (/) ) ) )
5345, 49, 52sylancr 644 . . . . . . 7  |-  ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  ( Xt_ `  (/) )  e.  (TopOn `  ( B  ^m  (/) ) ) )
54 tmdmnd 17774 . . . . . . . . 9  |-  ( G  e. TopMnd  ->  G  e.  Mnd )
5554adantl 452 . . . . . . . 8  |-  ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  G  e.  Mnd )
5647, 41mndidcl 14407 . . . . . . . 8  |-  ( G  e.  Mnd  ->  ( 0g `  G )  e.  B )
5755, 56syl 15 . . . . . . 7  |-  ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  ( 0g `  G )  e.  B
)
5853, 49, 57cnmptc 17372 . . . . . 6  |-  ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  ( x  e.  ( B  ^m  (/) )  |->  ( 0g `  G ) )  e.  ( (
Xt_ `  (/) )  Cn  J ) )
5944, 58syl5eqel 2380 . . . . 5  |-  ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  ( x  e.  ( B  ^m  (/) )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (/) )  Cn  J ) )
60 oveq2 5882 . . . . . . . . . . 11  |-  ( x  =  w  ->  ( G  gsumg  x )  =  ( G  gsumg  w ) )
6160cbvmptv 4127 . . . . . . . . . 10  |-  ( x  e.  ( B  ^m  ( y  u.  {
z } ) ) 
|->  ( G  gsumg  x ) )  =  ( w  e.  ( B  ^m  ( y  u.  { z } ) )  |->  ( G 
gsumg  w ) )
62 eqid 2296 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
63 simpl1l 1006 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  G  e. CMnd )
64 simp2l 981 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  y  e.  Fin )
65 snfi 6957 . . . . . . . . . . . . . 14  |-  { z }  e.  Fin
66 unfi 7140 . . . . . . . . . . . . . 14  |-  ( ( y  e.  Fin  /\  { z }  e.  Fin )  ->  ( y  u. 
{ z } )  e.  Fin )
6764, 65, 66sylancl 643 . . . . . . . . . . . . 13  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( y  u.  { z } )  e.  Fin )
6867adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( y  u.  { z } )  e.  Fin )
69 elmapi 6808 . . . . . . . . . . . . 13  |-  ( w  e.  ( B  ^m  ( y  u.  {
z } ) )  ->  w : ( y  u.  { z } ) --> B )
7069adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  w :
( y  u.  {
z } ) --> B )
7168, 70fisuppfi 14466 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( `' w " ( _V  \  { ( 0g `  G ) } ) )  e.  Fin )
72 simpl2r 1009 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  -.  z  e.  y )
73 disjsn 3706 . . . . . . . . . . . . 13  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
7472, 73sylibr 203 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( y  i^i  { z } )  =  (/) )
75 eqidd 2297 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( y  u.  { z } )  =  ( y  u. 
{ z } ) )
7647, 41, 62, 63, 68, 70, 71, 74, 75gsumsplit 15223 . . . . . . . . . . 11  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( G  gsumg  w )  =  ( ( G  gsumg  ( w  |`  y
) ) ( +g  `  G ) ( G 
gsumg  ( w  |`  { z } ) ) ) )
7776mpteq2dva 4122 . . . . . . . . . 10  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( G  gsumg  w ) )  =  ( w  e.  ( B  ^m  ( y  u.  { z } ) )  |->  ( ( G  gsumg  ( w  |`  y
) ) ( +g  `  G ) ( G 
gsumg  ( w  |`  { z } ) ) ) ) )
7861, 77syl5eq 2340 . . . . . . . . 9  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( x  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( G  gsumg  x ) )  =  ( w  e.  ( B  ^m  ( y  u.  { z } ) )  |->  ( ( G  gsumg  ( w  |`  y
) ) ( +g  `  G ) ( G 
gsumg  ( w  |`  { z } ) ) ) ) )
79 simp1r 980 . . . . . . . . . 10  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  G  e. TopMnd )
8079, 48syl 15 . . . . . . . . . . 11  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  J  e.  (TopOn `  B ) )
81 eqid 2296 . . . . . . . . . . . 12  |-  ( Xt_ `  ( ( y  u. 
{ z } )  X.  { J }
) )  =  (
Xt_ `  ( (
y  u.  { z } )  X.  { J } ) )
8281pttoponconst 17308 . . . . . . . . . . 11  |-  ( ( ( y  u.  {
z } )  e. 
Fin  /\  J  e.  (TopOn `  B ) )  ->  ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  e.  (TopOn `  ( B  ^m  (
y  u.  { z } ) ) ) )
8367, 80, 82syl2anc 642 . . . . . . . . . 10  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( Xt_ `  ( ( y  u. 
{ z } )  X.  { J }
) )  e.  (TopOn `  ( B  ^m  (
y  u.  { z } ) ) ) )
84 toponuni 16681 . . . . . . . . . . . . . 14  |-  ( (
Xt_ `  ( (
y  u.  { z } )  X.  { J } ) )  e.  (TopOn `  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( B  ^m  ( y  u.  {
z } ) )  =  U. ( Xt_ `  ( ( y  u. 
{ z } )  X.  { J }
) ) )
8583, 84syl 15 . . . . . . . . . . . . 13  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( B  ^m  ( y  u.  {
z } ) )  =  U. ( Xt_ `  ( ( y  u. 
{ z } )  X.  { J }
) ) )
86 mpteq1 4116 . . . . . . . . . . . . 13  |-  ( ( B  ^m  ( y  u.  { z } ) )  =  U. ( Xt_ `  ( ( y  u.  { z } )  X.  { J } ) )  -> 
( w  e.  ( B  ^m  ( y  u.  { z } ) )  |->  ( w  |`  y ) )  =  ( w  e.  U. ( Xt_ `  ( ( y  u.  { z } )  X.  { J } ) )  |->  ( w  |`  y )
) )
8785, 86syl 15 . . . . . . . . . . . 12  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( w  |`  y )
)  =  ( w  e.  U. ( Xt_ `  ( ( y  u. 
{ z } )  X.  { J }
) )  |->  ( w  |`  y ) ) )
88 topontop 16680 . . . . . . . . . . . . . . 15  |-  ( J  e.  (TopOn `  B
)  ->  J  e.  Top )
8979, 48, 883syl 18 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  J  e.  Top )
90 fconst6g 5446 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  ->  (
( y  u.  {
z } )  X. 
{ J } ) : ( y  u. 
{ z } ) --> Top )
9189, 90syl 15 . . . . . . . . . . . . 13  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( (
y  u.  { z } )  X.  { J } ) : ( y  u.  { z } ) --> Top )
92 ssun1 3351 . . . . . . . . . . . . . 14  |-  y  C_  ( y  u.  {
z } )
9392a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  y  C_  ( y  u.  {
z } ) )
94 eqid 2296 . . . . . . . . . . . . . 14  |-  U. ( Xt_ `  ( ( y  u.  { z } )  X.  { J } ) )  = 
U. ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )
95 xpssres 5005 . . . . . . . . . . . . . . . . 17  |-  ( y 
C_  ( y  u. 
{ z } )  ->  ( ( ( y  u.  { z } )  X.  { J } )  |`  y
)  =  ( y  X.  { J }
) )
9692, 95ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  u.  {
z } )  X. 
{ J } )  |`  y )  =  ( y  X.  { J } )
9796eqcomi 2300 . . . . . . . . . . . . . . 15  |-  ( y  X.  { J }
)  =  ( ( ( y  u.  {
z } )  X. 
{ J } )  |`  y )
9897fveq2i 5544 . . . . . . . . . . . . . 14  |-  ( Xt_ `  ( y  X.  { J } ) )  =  ( Xt_ `  (
( ( y  u. 
{ z } )  X.  { J }
)  |`  y ) )
9994, 81, 98ptrescn 17349 . . . . . . . . . . . . 13  |-  ( ( ( y  u.  {
z } )  e. 
Fin  /\  ( (
y  u.  { z } )  X.  { J } ) : ( y  u.  { z } ) --> Top  /\  y  C_  ( y  u. 
{ z } ) )  ->  ( w  e.  U. ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  |->  ( w  |`  y ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  ( Xt_ `  ( y  X.  { J } ) ) ) )
10067, 91, 93, 99syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  U. ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  |->  ( w  |`  y ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  ( Xt_ `  ( y  X.  { J } ) ) ) )
10187, 100eqeltrd 2370 . . . . . . . . . . 11  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( w  |`  y )
)  e.  ( (
Xt_ `  ( (
y  u.  { z } )  X.  { J } ) )  Cn  ( Xt_ `  (
y  X.  { J } ) ) ) )
102 eqid 2296 . . . . . . . . . . . . 13  |-  ( Xt_ `  ( y  X.  { J } ) )  =  ( Xt_ `  (
y  X.  { J } ) )
103102pttoponconst 17308 . . . . . . . . . . . 12  |-  ( ( y  e.  Fin  /\  J  e.  (TopOn `  B
) )  ->  ( Xt_ `  ( y  X. 
{ J } ) )  e.  (TopOn `  ( B  ^m  y
) ) )
10464, 80, 103syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( Xt_ `  ( y  X.  { J } ) )  e.  (TopOn `  ( B  ^m  y ) ) )
105 simp3 957 . . . . . . . . . . 11  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )
106 oveq2 5882 . . . . . . . . . . 11  |-  ( x  =  ( w  |`  y )  ->  ( G  gsumg  x )  =  ( G  gsumg  ( w  |`  y
) ) )
10783, 101, 104, 105, 106cnmpt11 17373 . . . . . . . . . 10  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( G  gsumg  ( w  |`  y
) ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  J ) )
10870feqmptd 5591 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  w  =  ( k  e.  ( y  u.  { z } )  |->  ( w `
 k ) ) )
109108reseq1d 4970 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( w  |` 
{ z } )  =  ( ( k  e.  ( y  u. 
{ z } ) 
|->  ( w `  k
) )  |`  { z } ) )
110 ssun2 3352 . . . . . . . . . . . . . . . 16  |-  { z }  C_  ( y  u.  { z } )
111 resmpt 5016 . . . . . . . . . . . . . . . 16  |-  ( { z }  C_  (
y  u.  { z } )  ->  (
( k  e.  ( y  u.  { z } )  |->  ( w `
 k ) )  |`  { z } )  =  ( k  e. 
{ z }  |->  ( w `  k ) ) )
112110, 111ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  ( y  u.  { z } )  |->  ( w `  k ) )  |`  { z } )  =  ( k  e. 
{ z }  |->  ( w `  k ) )
113109, 112syl6eq 2344 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( w  |` 
{ z } )  =  ( k  e. 
{ z }  |->  ( w `  k ) ) )
114113oveq2d 5890 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( G  gsumg  ( w  |`  { z } ) )  =  ( G  gsumg  ( k  e.  {
z }  |->  ( w `
 k ) ) ) )
115 cmnmnd 15120 . . . . . . . . . . . . . . 15  |-  ( G  e. CMnd  ->  G  e.  Mnd )
11663, 115syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  G  e.  Mnd )
117 vex 2804 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
118117a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  z  e.  _V )
119117snid 3680 . . . . . . . . . . . . . . . 16  |-  z  e. 
{ z }
120 elun2 3356 . . . . . . . . . . . . . . . 16  |-  ( z  e.  { z }  ->  z  e.  ( y  u.  { z } ) )
121119, 120mp1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  z  e.  ( y  u.  {
z } ) )
122 ffvelrn 5679 . . . . . . . . . . . . . . 15  |-  ( ( w : ( y  u.  { z } ) --> B  /\  z  e.  ( y  u.  {
z } ) )  ->  ( w `  z )  e.  B
)
12370, 121, 122syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( w `  z )  e.  B
)
124 fveq2 5541 . . . . . . . . . . . . . . 15  |-  ( k  =  z  ->  (
w `  k )  =  ( w `  z ) )
12547, 124gsumsn 15236 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Mnd  /\  z  e.  _V  /\  (
w `  z )  e.  B )  ->  ( G  gsumg  ( k  e.  {
z }  |->  ( w `
 k ) ) )  =  ( w `
 z ) )
126116, 118, 123, 125syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( G  gsumg  ( k  e.  { z }  |->  ( w `  k ) ) )  =  ( w `  z ) )
127114, 126eqtrd 2328 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( x  e.  ( B  ^m  y )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  /\  w  e.  ( B  ^m  ( y  u.  {
z } ) ) )  ->  ( G  gsumg  ( w  |`  { z } ) )  =  ( w `  z
) )
128127mpteq2dva 4122 . . . . . . . . . . 11  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( G  gsumg  ( w  |`  { z } ) ) )  =  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( w `  z ) ) )
129 mpteq1 4116 . . . . . . . . . . . . . 14  |-  ( ( B  ^m  ( y  u.  { z } ) )  =  U. ( Xt_ `  ( ( y  u.  { z } )  X.  { J } ) )  -> 
( w  e.  ( B  ^m  ( y  u.  { z } ) )  |->  ( w `
 z ) )  =  ( w  e. 
U. ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  |->  ( w `  z ) ) )
13085, 129syl 15 . . . . . . . . . . . . 13  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( w `  z ) )  =  ( w  e.  U. ( Xt_ `  ( ( y  u. 
{ z } )  X.  { J }
) )  |->  ( w `
 z ) ) )
131119, 120mp1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  z  e.  ( y  u.  {
z } ) )
13294, 81ptpjcn 17321 . . . . . . . . . . . . . 14  |-  ( ( ( y  u.  {
z } )  e. 
Fin  /\  ( (
y  u.  { z } )  X.  { J } ) : ( y  u.  { z } ) --> Top  /\  z  e.  ( y  u.  { z } ) )  ->  ( w  e.  U. ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  |->  ( w `  z ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  ( ( ( y  u.  {
z } )  X. 
{ J } ) `
 z ) ) )
13367, 91, 131, 132syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  U. ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  |->  ( w `  z ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  ( ( ( y  u.  {
z } )  X. 
{ J } ) `
 z ) ) )
134130, 133eqeltrd 2370 . . . . . . . . . . . 12  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( w `  z ) )  e.  ( (
Xt_ `  ( (
y  u.  { z } )  X.  { J } ) )  Cn  ( ( ( y  u.  { z } )  X.  { J } ) `  z
) ) )
135 fvconst2g 5743 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  z  e.  ( y  u.  { z } ) )  ->  ( (
( y  u.  {
z } )  X. 
{ J } ) `
 z )  =  J )
13689, 131, 135syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( (
( y  u.  {
z } )  X. 
{ J } ) `
 z )  =  J )
137136oveq2d 5890 . . . . . . . . . . . 12  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( ( Xt_ `  ( ( y  u.  { z } )  X.  { J } ) )  Cn  ( ( ( y  u.  { z } )  X.  { J } ) `  z
) )  =  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  J ) )
138134, 137eleqtrd 2372 . . . . . . . . . . 11  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( w `  z ) )  e.  ( (
Xt_ `  ( (
y  u.  { z } )  X.  { J } ) )  Cn  J ) )
139128, 138eqeltrd 2370 . . . . . . . . . 10  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( G  gsumg  ( w  |`  { z } ) ) )  e.  ( ( Xt_ `  ( ( y  u. 
{ z } )  X.  { J }
) )  Cn  J
) )
14046, 62, 79, 83, 107, 139cnmpt1plusg 17786 . . . . . . . . 9  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( w  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( ( G  gsumg  ( w  |`  y
) ) ( +g  `  G ) ( G 
gsumg  ( w  |`  { z } ) ) ) )  e.  ( (
Xt_ `  ( (
y  u.  { z } )  X.  { J } ) )  Cn  J ) )
14178, 140eqeltrd 2370 . . . . . . . 8  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
)  /\  ( x  e.  ( B  ^m  y
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( y  X.  { J } ) )  Cn  J ) )  ->  ( x  e.  ( B  ^m  (
y  u.  { z } ) )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  J ) )
1421413expia 1153 . . . . . . 7  |-  ( ( ( G  e. CMnd  /\  G  e. TopMnd )  /\  (
y  e.  Fin  /\  -.  z  e.  y
) )  ->  (
( x  e.  ( B  ^m  y ) 
|->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J )  ->  (
x  e.  ( B  ^m  ( y  u. 
{ z } ) )  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( (
y  u.  { z } )  X.  { J } ) )  Cn  J ) ) )
143142expcom 424 . . . . . 6  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( G  e. CMnd  /\  G  e. TopMnd
)  ->  ( (
x  e.  ( B  ^m  y )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J )  ->  (
x  e.  ( B  ^m  ( y  u. 
{ z } ) )  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( (
y  u.  { z } )  X.  { J } ) )  Cn  J ) ) ) )
144143a2d 23 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
( G  e. CMnd  /\  G  e. TopMnd )  ->  ( x  e.  ( B  ^m  y )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  (
y  X.  { J } ) )  Cn  J ) )  -> 
( ( G  e. CMnd  /\  G  e. TopMnd )  -> 
( x  e.  ( B  ^m  ( y  u.  { z } ) )  |->  ( G 
gsumg  x ) )  e.  ( ( Xt_ `  (
( y  u.  {
z } )  X. 
{ J } ) )  Cn  J ) ) ) )
14510, 18, 26, 34, 59, 144findcard2s 7115 . . . 4  |-  ( A  e.  Fin  ->  (
( G  e. CMnd  /\  G  e. TopMnd )  ->  ( x  e.  ( B  ^m  A )  |->  ( G  gsumg  x ) )  e.  ( ( Xt_ `  ( A  X.  { J }
) )  Cn  J
) ) )
146145com12 27 . . 3  |-  ( ( G  e. CMnd  /\  G  e. TopMnd )  ->  ( A  e.  Fin  ->  ( x  e.  ( B  ^m  A
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( A  X.  { J } ) )  Cn  J ) ) )
1471463impia 1148 . 2  |-  ( ( G  e. CMnd  /\  G  e. TopMnd  /\  A  e.  Fin )  ->  ( x  e.  ( B  ^m  A
)  |->  ( G  gsumg  x ) )  e.  ( (
Xt_ `  ( A  X.  { J } ) )  Cn  J ) )
14848, 88syl 15 . . . . 5  |-  ( G  e. TopMnd  ->  J  e.  Top )
149 xkopt 17365 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  Fin )  ->  ( J  ^ k o  ~P A )  =  ( Xt_ `  ( A  X.  { J }
) ) )
150148, 149sylan 457 . . . 4  |-  ( ( G  e. TopMnd  /\  A  e. 
Fin )  ->  ( J  ^ k o  ~P A )  =  (
Xt_ `  ( A  X.  { J } ) ) )
1511503adant1 973 . . 3  |-  ( ( G  e. CMnd  /\  G  e. TopMnd  /\  A  e.  Fin )  ->  ( J  ^ k o  ~P A
)  =  ( Xt_ `  ( A  X.  { J } ) ) )
152151oveq1d 5889 . 2  |-  ( ( G  e. CMnd  /\  G  e. TopMnd  /\  A  e.  Fin )  ->  ( ( J  ^ k o  ~P A )  Cn  J
)  =  ( (
Xt_ `  ( A  X.  { J } ) )  Cn  J ) )
153147, 152eleqtrrd 2373 1  |-  ( ( G  e. CMnd  /\  G  e. TopMnd  /\  A  e.  Fin )  ->  ( x  e.  ( B  ^m  A
)  |->  ( G  gsumg  x ) )  e.  ( ( J  ^ k o  ~P A )  Cn  J ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   _Vcvv 2801    \ cdif 3162    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653   U.cuni 3843    e. cmpt 4093    X. cxp 4703    |` cres 4707    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^m cmap 6788   Fincfn 6879   Basecbs 13164   +g cplusg 13224   TopOpenctopn 13342   Xt_cpt 13359   0gc0g 13416    gsumg cgsu 13417   Mndcmnd 14377  CMndccmn 15105   Topctop 16647  TopOnctopon 16648    Cn ccn 16970    ^ k o cxko 17272  TopMndctmd 17769
This theorem is referenced by:  tmdgsum2  17795
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-fzo 10887  df-seq 11063  df-hash 11354  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-rest 13343  df-topgen 13360  df-pt 13361  df-0g 13420  df-gsum 13421  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-plusf 14384  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cn 16973  df-cnp 16974  df-cmp 17130  df-tx 17273  df-xko 17274  df-tmd 17771
  Copyright terms: Public domain W3C validator