MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsxpsmopn Structured version   Unicode version

Theorem tmsxpsmopn 18572
Description: Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsxps.p  |-  P  =  ( dist `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) )
tmsxps.1  |-  ( ph  ->  M  e.  ( * Met `  X ) )
tmsxps.2  |-  ( ph  ->  N  e.  ( * Met `  Y ) )
tmsxpsmopn.j  |-  J  =  ( MetOpen `  M )
tmsxpsmopn.k  |-  K  =  ( MetOpen `  N )
tmsxpsmopn.l  |-  L  =  ( MetOpen `  P )
Assertion
Ref Expression
tmsxpsmopn  |-  ( ph  ->  L  =  ( J 
tX  K ) )

Proof of Theorem tmsxpsmopn
StepHypRef Expression
1 tmsxps.1 . . . . 5  |-  ( ph  ->  M  e.  ( * Met `  X ) )
2 eqid 2438 . . . . . 6  |-  (toMetSp `  M
)  =  (toMetSp `  M
)
32tmsxms 18521 . . . . 5  |-  ( M  e.  ( * Met `  X )  ->  (toMetSp `  M )  e.  * MetSp )
41, 3syl 16 . . . 4  |-  ( ph  ->  (toMetSp `  M )  e.  * MetSp )
5 xmstps 18488 . . . 4  |-  ( (toMetSp `  M )  e.  * MetSp  ->  (toMetSp `  M )  e.  TopSp )
64, 5syl 16 . . 3  |-  ( ph  ->  (toMetSp `  M )  e.  TopSp )
7 tmsxps.2 . . . . 5  |-  ( ph  ->  N  e.  ( * Met `  Y ) )
8 eqid 2438 . . . . . 6  |-  (toMetSp `  N
)  =  (toMetSp `  N
)
98tmsxms 18521 . . . . 5  |-  ( N  e.  ( * Met `  Y )  ->  (toMetSp `  N )  e.  * MetSp )
107, 9syl 16 . . . 4  |-  ( ph  ->  (toMetSp `  N )  e.  * MetSp )
11 xmstps 18488 . . . 4  |-  ( (toMetSp `  N )  e.  * MetSp  ->  (toMetSp `  N )  e.  TopSp )
1210, 11syl 16 . . 3  |-  ( ph  ->  (toMetSp `  N )  e.  TopSp )
13 eqid 2438 . . . 4  |-  ( (toMetSp `  M )  X.s  (toMetSp `  N
) )  =  ( (toMetSp `  M )  X.s  (toMetSp `  N ) )
14 eqid 2438 . . . 4  |-  ( TopOpen `  (toMetSp `  M ) )  =  ( TopOpen `  (toMetSp `  M ) )
15 eqid 2438 . . . 4  |-  ( TopOpen `  (toMetSp `  N ) )  =  ( TopOpen `  (toMetSp `  N ) )
16 eqid 2438 . . . 4  |-  ( TopOpen `  ( (toMetSp `  M )  X.s  (toMetSp `  N ) ) )  =  ( TopOpen `  ( (toMetSp `  M )  X.s  (toMetSp `  N ) ) )
1713, 14, 15, 16xpstopn 17849 . . 3  |-  ( ( (toMetSp `  M )  e.  TopSp  /\  (toMetSp `  N
)  e.  TopSp )  -> 
( TopOpen `  ( (toMetSp `  M )  X.s  (toMetSp `  N
) ) )  =  ( ( TopOpen `  (toMetSp `  M ) )  tX  ( TopOpen `  (toMetSp `  N
) ) ) )
186, 12, 17syl2anc 644 . 2  |-  ( ph  ->  ( TopOpen `  ( (toMetSp `  M )  X.s  (toMetSp `  N
) ) )  =  ( ( TopOpen `  (toMetSp `  M ) )  tX  ( TopOpen `  (toMetSp `  N
) ) ) )
19 tmsxpsmopn.l . . 3  |-  L  =  ( MetOpen `  P )
2013xpsxms 18569 . . . . . 6  |-  ( ( (toMetSp `  M )  e.  * MetSp  /\  (toMetSp `  N )  e.  * MetSp )  ->  ( (toMetSp `  M )  X.s  (toMetSp `  N
) )  e.  * MetSp )
214, 10, 20syl2anc 644 . . . . 5  |-  ( ph  ->  ( (toMetSp `  M
)  X.s  (toMetSp `  N )
)  e.  * MetSp )
22 eqid 2438 . . . . . 6  |-  ( Base `  ( (toMetSp `  M
)  X.s  (toMetSp `  N )
) )  =  (
Base `  ( (toMetSp `  M )  X.s  (toMetSp `  N
) ) )
23 tmsxps.p . . . . . . 7  |-  P  =  ( dist `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) )
2423reseq1i 5145 . . . . . 6  |-  ( P  |`  ( ( Base `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) )  X.  ( Base `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) ) ) )  =  ( ( dist `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) )  |`  ( ( Base `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) )  X.  ( Base `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) ) ) )
2516, 22, 24xmstopn 18486 . . . . 5  |-  ( ( (toMetSp `  M )  X.s  (toMetSp `  N ) )  e.  * MetSp  ->  ( TopOpen
`  ( (toMetSp `  M
)  X.s  (toMetSp `  N )
) )  =  (
MetOpen `  ( P  |`  ( ( Base `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) )  X.  ( Base `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) ) ) ) ) )
2621, 25syl 16 . . . 4  |-  ( ph  ->  ( TopOpen `  ( (toMetSp `  M )  X.s  (toMetSp `  N
) ) )  =  ( MetOpen `  ( P  |`  ( ( Base `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) )  X.  ( Base `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) ) ) ) ) )
27 eqid 2438 . . . . . . 7  |-  ( Base `  (toMetSp `  M )
)  =  ( Base `  (toMetSp `  M )
)
28 eqid 2438 . . . . . . 7  |-  ( Base `  (toMetSp `  N )
)  =  ( Base `  (toMetSp `  N )
)
2913, 27, 28, 4, 10, 23xpsdsfn2 18413 . . . . . 6  |-  ( ph  ->  P  Fn  ( (
Base `  ( (toMetSp `  M )  X.s  (toMetSp `  N
) ) )  X.  ( Base `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) ) ) )
30 fnresdm 5557 . . . . . 6  |-  ( P  Fn  ( ( Base `  ( (toMetSp `  M
)  X.s  (toMetSp `  N )
) )  X.  ( Base `  ( (toMetSp `  M
)  X.s  (toMetSp `  N )
) ) )  -> 
( P  |`  (
( Base `  ( (toMetSp `  M )  X.s  (toMetSp `  N
) ) )  X.  ( Base `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) ) ) )  =  P )
3129, 30syl 16 . . . . 5  |-  ( ph  ->  ( P  |`  (
( Base `  ( (toMetSp `  M )  X.s  (toMetSp `  N
) ) )  X.  ( Base `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) ) ) )  =  P )
3231fveq2d 5735 . . . 4  |-  ( ph  ->  ( MetOpen `  ( P  |`  ( ( Base `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) )  X.  ( Base `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) ) ) ) )  =  ( MetOpen `  P )
)
3326, 32eqtr2d 2471 . . 3  |-  ( ph  ->  ( MetOpen `  P )  =  ( TopOpen `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) ) )
3419, 33syl5eq 2482 . 2  |-  ( ph  ->  L  =  ( TopOpen `  ( (toMetSp `  M )  X.s  (toMetSp `  N ) ) ) )
35 tmsxpsmopn.j . . . . 5  |-  J  =  ( MetOpen `  M )
362, 35tmstopn 18520 . . . 4  |-  ( M  e.  ( * Met `  X )  ->  J  =  ( TopOpen `  (toMetSp `  M ) ) )
371, 36syl 16 . . 3  |-  ( ph  ->  J  =  ( TopOpen `  (toMetSp `  M ) ) )
38 tmsxpsmopn.k . . . . 5  |-  K  =  ( MetOpen `  N )
398, 38tmstopn 18520 . . . 4  |-  ( N  e.  ( * Met `  Y )  ->  K  =  ( TopOpen `  (toMetSp `  N ) ) )
407, 39syl 16 . . 3  |-  ( ph  ->  K  =  ( TopOpen `  (toMetSp `  N ) ) )
4137, 40oveq12d 6102 . 2  |-  ( ph  ->  ( J  tX  K
)  =  ( (
TopOpen `  (toMetSp `  M
) )  tX  ( TopOpen
`  (toMetSp `  N )
) ) )
4218, 34, 413eqtr4d 2480 1  |-  ( ph  ->  L  =  ( J 
tX  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726    X. cxp 4879    |` cres 4883    Fn wfn 5452   ` cfv 5457  (class class class)co 6084   Basecbs 13474   distcds 13543   TopOpenctopn 13654    X.s cxps 13737   * Metcxmt 16691   MetOpencmopn 16696   TopSpctps 16966    tX ctx 17597   *
MetSpcxme 18352  toMetSpctmt 18354
This theorem is referenced by:  txmetcnp  18582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-fi 7419  df-sup 7449  df-oi 7482  df-card 7831  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-icc 10928  df-fz 11049  df-fzo 11141  df-seq 11329  df-hash 11624  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-hom 13558  df-cco 13559  df-rest 13655  df-topn 13656  df-topgen 13672  df-pt 13673  df-prds 13676  df-xrs 13731  df-0g 13732  df-gsum 13733  df-qtop 13738  df-imas 13739  df-xps 13741  df-mre 13816  df-mrc 13817  df-acs 13819  df-mnd 14695  df-submnd 14744  df-mulg 14820  df-cntz 15121  df-cmn 15419  df-psmet 16699  df-xmet 16700  df-bl 16702  df-mopn 16703  df-top 16968  df-bases 16970  df-topon 16971  df-topsp 16972  df-cn 17296  df-cnp 17297  df-tx 17599  df-hmeo 17792  df-xms 18355  df-tms 18357
  Copyright terms: Public domain W3C validator