MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsxpsval2 Structured version   Unicode version

Theorem tmsxpsval2 18559
Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsxps.p  |-  P  =  ( dist `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) )
tmsxps.1  |-  ( ph  ->  M  e.  ( * Met `  X ) )
tmsxps.2  |-  ( ph  ->  N  e.  ( * Met `  Y ) )
tmsxpsval.a  |-  ( ph  ->  A  e.  X )
tmsxpsval.b  |-  ( ph  ->  B  e.  Y )
tmsxpsval.c  |-  ( ph  ->  C  e.  X )
tmsxpsval.d  |-  ( ph  ->  D  e.  Y )
Assertion
Ref Expression
tmsxpsval2  |-  ( ph  ->  ( <. A ,  B >. P <. C ,  D >. )  =  if ( ( A M C )  <_  ( B N D ) ,  ( B N D ) ,  ( A M C ) ) )

Proof of Theorem tmsxpsval2
StepHypRef Expression
1 tmsxps.p . . 3  |-  P  =  ( dist `  (
(toMetSp `  M )  X.s  (toMetSp `  N ) ) )
2 tmsxps.1 . . 3  |-  ( ph  ->  M  e.  ( * Met `  X ) )
3 tmsxps.2 . . 3  |-  ( ph  ->  N  e.  ( * Met `  Y ) )
4 tmsxpsval.a . . 3  |-  ( ph  ->  A  e.  X )
5 tmsxpsval.b . . 3  |-  ( ph  ->  B  e.  Y )
6 tmsxpsval.c . . 3  |-  ( ph  ->  C  e.  X )
7 tmsxpsval.d . . 3  |-  ( ph  ->  D  e.  Y )
81, 2, 3, 4, 5, 6, 7tmsxpsval 18558 . 2  |-  ( ph  ->  ( <. A ,  B >. P <. C ,  D >. )  =  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  ) )
9 xrltso 10724 . . . 4  |-  <  Or  RR*
109a1i 11 . . 3  |-  ( ph  ->  <  Or  RR* )
11 xmetcl 18351 . . . 4  |-  ( ( M  e.  ( * Met `  X )  /\  A  e.  X  /\  C  e.  X
)  ->  ( A M C )  e.  RR* )
122, 4, 6, 11syl3anc 1184 . . 3  |-  ( ph  ->  ( A M C )  e.  RR* )
13 xmetcl 18351 . . . 4  |-  ( ( N  e.  ( * Met `  Y )  /\  B  e.  Y  /\  D  e.  Y
)  ->  ( B N D )  e.  RR* )
143, 5, 7, 13syl3anc 1184 . . 3  |-  ( ph  ->  ( B N D )  e.  RR* )
15 suppr 7463 . . 3  |-  ( (  <  Or  RR*  /\  ( A M C )  e. 
RR*  /\  ( B N D )  e.  RR* )  ->  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  )  =  if ( ( B N D )  < 
( A M C ) ,  ( A M C ) ,  ( B N D ) ) )
1610, 12, 14, 15syl3anc 1184 . 2  |-  ( ph  ->  sup ( { ( A M C ) ,  ( B N D ) } ,  RR* ,  <  )  =  if ( ( B N D )  < 
( A M C ) ,  ( A M C ) ,  ( B N D ) ) )
17 xrltnle 9134 . . . . 5  |-  ( ( ( B N D )  e.  RR*  /\  ( A M C )  e. 
RR* )  ->  (
( B N D )  <  ( A M C )  <->  -.  ( A M C )  <_ 
( B N D ) ) )
1814, 12, 17syl2anc 643 . . . 4  |-  ( ph  ->  ( ( B N D )  <  ( A M C )  <->  -.  ( A M C )  <_ 
( B N D ) ) )
1918ifbid 3749 . . 3  |-  ( ph  ->  if ( ( B N D )  < 
( A M C ) ,  ( A M C ) ,  ( B N D ) )  =  if ( -.  ( A M C )  <_ 
( B N D ) ,  ( A M C ) ,  ( B N D ) ) )
20 ifnot 3769 . . 3  |-  if ( -.  ( A M C )  <_  ( B N D ) ,  ( A M C ) ,  ( B N D ) )  =  if ( ( A M C )  <_  ( B N D ) ,  ( B N D ) ,  ( A M C ) )
2119, 20syl6eq 2483 . 2  |-  ( ph  ->  if ( ( B N D )  < 
( A M C ) ,  ( A M C ) ,  ( B N D ) )  =  if ( ( A M C )  <_  ( B N D ) ,  ( B N D ) ,  ( A M C ) ) )
228, 16, 213eqtrd 2471 1  |-  ( ph  ->  ( <. A ,  B >. P <. C ,  D >. )  =  if ( ( A M C )  <_  ( B N D ) ,  ( B N D ) ,  ( A M C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    = wceq 1652    e. wcel 1725   ifcif 3731   {cpr 3807   <.cop 3809   class class class wbr 4204    Or wor 4494   ` cfv 5446  (class class class)co 6073   supcsup 7437   RR*cxr 9109    < clt 9110    <_ cle 9111   distcds 13528    X.s cxps 13722   * Metcxmt 16676  toMetSpctmt 18339
This theorem is referenced by:  txmetcnp  18567
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7586  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7469  df-card 7816  df-cda 8038  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-4 10050  df-5 10051  df-6 10052  df-7 10053  df-8 10054  df-9 10055  df-10 10056  df-n0 10212  df-z 10273  df-dec 10373  df-uz 10479  df-q 10565  df-rp 10603  df-xneg 10700  df-xadd 10701  df-xmul 10702  df-icc 10913  df-fz 11034  df-fzo 11126  df-seq 11314  df-hash 11609  df-struct 13461  df-ndx 13462  df-slot 13463  df-base 13464  df-sets 13465  df-ress 13466  df-plusg 13532  df-mulr 13533  df-sca 13535  df-vsca 13536  df-tset 13538  df-ple 13539  df-ds 13541  df-hom 13543  df-cco 13544  df-rest 13640  df-topn 13641  df-topgen 13657  df-prds 13661  df-xrs 13716  df-0g 13717  df-gsum 13718  df-imas 13724  df-xps 13726  df-mre 13801  df-mrc 13802  df-acs 13804  df-mnd 14680  df-submnd 14729  df-mulg 14805  df-cntz 15106  df-cmn 15404  df-psmet 16684  df-xmet 16685  df-bl 16687  df-mopn 16688  df-top 16953  df-bases 16955  df-topon 16956  df-topsp 16957  df-xms 18340  df-tms 18342
  Copyright terms: Public domain W3C validator