MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngngp2 Unicode version

Theorem tngngp2 18168
Description: A norm turns a group into a normed group iff the generated metric is in fact a metric. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngngp2.t  |-  T  =  ( G toNrmGrp  N )
tngngp2.x  |-  X  =  ( Base `  G
)
tngngp2.d  |-  D  =  ( dist `  T
)
Assertion
Ref Expression
tngngp2  |-  ( N : X --> RR  ->  ( T  e. NrmGrp  <->  ( G  e. 
Grp  /\  D  e.  ( Met `  X ) ) ) )

Proof of Theorem tngngp2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ngpgrp 18121 . . . . 5  |-  ( T  e. NrmGrp  ->  T  e.  Grp )
2 tngngp2.x . . . . . . . 8  |-  X  =  ( Base `  G
)
3 fvex 5539 . . . . . . . 8  |-  ( Base `  G )  e.  _V
42, 3eqeltri 2353 . . . . . . 7  |-  X  e. 
_V
5 reex 8828 . . . . . . 7  |-  RR  e.  _V
6 fex2 5401 . . . . . . 7  |-  ( ( N : X --> RR  /\  X  e.  _V  /\  RR  e.  _V )  ->  N  e.  _V )
74, 5, 6mp3an23 1269 . . . . . 6  |-  ( N : X --> RR  ->  N  e.  _V )
82a1i 10 . . . . . . 7  |-  ( N  e.  _V  ->  X  =  ( Base `  G
) )
9 tngngp2.t . . . . . . . 8  |-  T  =  ( G toNrmGrp  N )
109, 2tngbas 18157 . . . . . . 7  |-  ( N  e.  _V  ->  X  =  ( Base `  T
) )
11 eqid 2283 . . . . . . . . 9  |-  ( +g  `  G )  =  ( +g  `  G )
129, 11tngplusg 18158 . . . . . . . 8  |-  ( N  e.  _V  ->  ( +g  `  G )  =  ( +g  `  T
) )
1312proplem3 13593 . . . . . . 7  |-  ( ( N  e.  _V  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
x ( +g  `  G
) y )  =  ( x ( +g  `  T ) y ) )
148, 10, 13grppropd 14500 . . . . . 6  |-  ( N  e.  _V  ->  ( G  e.  Grp  <->  T  e.  Grp ) )
157, 14syl 15 . . . . 5  |-  ( N : X --> RR  ->  ( G  e.  Grp  <->  T  e.  Grp ) )
161, 15syl5ibr 212 . . . 4  |-  ( N : X --> RR  ->  ( T  e. NrmGrp  ->  G  e. 
Grp ) )
1716imp 418 . . 3  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  G  e.  Grp )
18 ngpms 18122 . . . . . 6  |-  ( T  e. NrmGrp  ->  T  e.  MetSp )
1918adantl 452 . . . . 5  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  T  e.  MetSp )
20 eqid 2283 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
21 tngngp2.d . . . . . . 7  |-  D  =  ( dist `  T
)
2221reseq1i 4951 . . . . . 6  |-  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  =  ( ( dist `  T )  |`  (
( Base `  T )  X.  ( Base `  T
) ) )
2320, 22msmet 18003 . . . . 5  |-  ( T  e.  MetSp  ->  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  e.  ( Met `  ( Base `  T ) ) )
2419, 23syl 15 . . . 4  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( D  |`  ( ( Base `  T )  X.  ( Base `  T
) ) )  e.  ( Met `  ( Base `  T ) ) )
25 eqid 2283 . . . . . . . . . . 11  |-  ( -g `  G )  =  (
-g `  G )
262, 25grpsubf 14545 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  ( -g `  G ) : ( X  X.  X
) --> X )
2717, 26syl 15 . . . . . . . . 9  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  (
-g `  G ) : ( X  X.  X ) --> X )
28 fco 5398 . . . . . . . . 9  |-  ( ( N : X --> RR  /\  ( -g `  G ) : ( X  X.  X ) --> X )  ->  ( N  o.  ( -g `  G ) ) : ( X  X.  X ) --> RR )
2927, 28syldan 456 . . . . . . . 8  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( N  o.  ( -g `  G ) ) : ( X  X.  X
) --> RR )
307adantr 451 . . . . . . . . . . 11  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  N  e.  _V )
319, 25tngds 18164 . . . . . . . . . . 11  |-  ( N  e.  _V  ->  ( N  o.  ( -g `  G ) )  =  ( dist `  T
) )
3230, 31syl 15 . . . . . . . . . 10  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( N  o.  ( -g `  G ) )  =  ( dist `  T
) )
3332, 21syl6reqr 2334 . . . . . . . . 9  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  D  =  ( N  o.  ( -g `  G ) ) )
3433feq1d 5379 . . . . . . . 8  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( D : ( X  X.  X ) --> RR  <->  ( N  o.  ( -g `  G ) ) : ( X  X.  X
) --> RR ) )
3529, 34mpbird 223 . . . . . . 7  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  D : ( X  X.  X ) --> RR )
36 ffn 5389 . . . . . . 7  |-  ( D : ( X  X.  X ) --> RR  ->  D  Fn  ( X  X.  X ) )
37 fnresdm 5353 . . . . . . 7  |-  ( D  Fn  ( X  X.  X )  ->  ( D  |`  ( X  X.  X ) )  =  D )
3835, 36, 373syl 18 . . . . . 6  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( D  |`  ( X  X.  X ) )  =  D )
3930, 10syl 15 . . . . . . . 8  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  X  =  ( Base `  T
) )
4039, 39xpeq12d 4714 . . . . . . 7  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( X  X.  X )  =  ( ( Base `  T )  X.  ( Base `  T ) ) )
4140reseq2d 4955 . . . . . 6  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( D  |`  ( X  X.  X ) )  =  ( D  |`  (
( Base `  T )  X.  ( Base `  T
) ) ) )
4238, 41eqtr3d 2317 . . . . 5  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  D  =  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) ) )
4339fveq2d 5529 . . . . 5  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( Met `  X )  =  ( Met `  ( Base `  T ) ) )
4442, 43eleq12d 2351 . . . 4  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( D  e.  ( Met `  X )  <->  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  e.  ( Met `  ( Base `  T ) ) ) )
4524, 44mpbird 223 . . 3  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  D  e.  ( Met `  X
) )
4617, 45jca 518 . 2  |-  ( ( N : X --> RR  /\  T  e. NrmGrp )  ->  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )
4715biimpa 470 . . . 4  |-  ( ( N : X --> RR  /\  G  e.  Grp )  ->  T  e.  Grp )
4847adantrr 697 . . 3  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  T  e.  Grp )
49 simprr 733 . . . . . . . 8  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  D  e.  ( Met `  X ) )
507adantr 451 . . . . . . . . . 10  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  N  e.  _V )
5150, 10syl 15 . . . . . . . . 9  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  X  =  (
Base `  T )
)
5251fveq2d 5529 . . . . . . . 8  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( Met `  X
)  =  ( Met `  ( Base `  T
) ) )
5349, 52eleqtrd 2359 . . . . . . 7  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  D  e.  ( Met `  ( Base `  T ) ) )
54 metf 17895 . . . . . . 7  |-  ( D  e.  ( Met `  ( Base `  T ) )  ->  D : ( ( Base `  T
)  X.  ( Base `  T ) ) --> RR )
5553, 54syl 15 . . . . . 6  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  D : ( ( Base `  T
)  X.  ( Base `  T ) ) --> RR )
56 ffn 5389 . . . . . 6  |-  ( D : ( ( Base `  T )  X.  ( Base `  T ) ) --> RR  ->  D  Fn  ( ( Base `  T
)  X.  ( Base `  T ) ) )
57 fnresdm 5353 . . . . . 6  |-  ( D  Fn  ( ( Base `  T )  X.  ( Base `  T ) )  ->  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  =  D )
5855, 56, 573syl 18 . . . . 5  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  =  D )
5958, 53eqeltrd 2357 . . . 4  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  e.  ( Met `  ( Base `  T ) ) )
6058fveq2d 5529 . . . . 5  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( MetOpen `  ( D  |`  ( ( Base `  T )  X.  ( Base `  T ) ) ) )  =  (
MetOpen `  D ) )
61 simprl 732 . . . . . 6  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  G  e.  Grp )
62 eqid 2283 . . . . . . 7  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
639, 21, 62tngtopn 18166 . . . . . 6  |-  ( ( G  e.  Grp  /\  N  e.  _V )  ->  ( MetOpen `  D )  =  ( TopOpen `  T
) )
6461, 50, 63syl2anc 642 . . . . 5  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( MetOpen `  D
)  =  ( TopOpen `  T ) )
6560, 64eqtr2d 2316 . . . 4  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( TopOpen `  T
)  =  ( MetOpen `  ( D  |`  ( (
Base `  T )  X.  ( Base `  T
) ) ) ) )
66 eqid 2283 . . . . 5  |-  ( TopOpen `  T )  =  (
TopOpen `  T )
6766, 20, 22isms2 17996 . . . 4  |-  ( T  e.  MetSp 
<->  ( ( D  |`  ( ( Base `  T
)  X.  ( Base `  T ) ) )  e.  ( Met `  ( Base `  T ) )  /\  ( TopOpen `  T
)  =  ( MetOpen `  ( D  |`  ( (
Base `  T )  X.  ( Base `  T
) ) ) ) ) )
6859, 65, 67sylanbrc 645 . . 3  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  T  e.  MetSp )
69 simpl 443 . . . . . . 7  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  N : X --> RR )
709, 2, 5tngnm 18167 . . . . . . 7  |-  ( ( G  e.  Grp  /\  N : X --> RR )  ->  N  =  (
norm `  T )
)
7161, 69, 70syl2anc 642 . . . . . 6  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  N  =  (
norm `  T )
)
728, 10eqtr3d 2317 . . . . . . . 8  |-  ( N  e.  _V  ->  ( Base `  G )  =  ( Base `  T
) )
7372, 12grpsubpropd 14566 . . . . . . 7  |-  ( N  e.  _V  ->  ( -g `  G )  =  ( -g `  T
) )
7450, 73syl 15 . . . . . 6  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( -g `  G
)  =  ( -g `  T ) )
7571, 74coeq12d 4848 . . . . 5  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( N  o.  ( -g `  G ) )  =  ( (
norm `  T )  o.  ( -g `  T
) ) )
7650, 31syl 15 . . . . 5  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( N  o.  ( -g `  G ) )  =  ( dist `  T ) )
7775, 76eqtr3d 2317 . . . 4  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( ( norm `  T )  o.  ( -g `  T ) )  =  ( dist `  T
) )
78 eqimss 3230 . . . 4  |-  ( ( ( norm `  T
)  o.  ( -g `  T ) )  =  ( dist `  T
)  ->  ( ( norm `  T )  o.  ( -g `  T
) )  C_  ( dist `  T ) )
7977, 78syl 15 . . 3  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  ( ( norm `  T )  o.  ( -g `  T ) ) 
C_  ( dist `  T
) )
80 eqid 2283 . . . 4  |-  ( norm `  T )  =  (
norm `  T )
81 eqid 2283 . . . 4  |-  ( -g `  T )  =  (
-g `  T )
82 eqid 2283 . . . 4  |-  ( dist `  T )  =  (
dist `  T )
8380, 81, 82isngp 18118 . . 3  |-  ( T  e. NrmGrp 
<->  ( T  e.  Grp  /\  T  e.  MetSp  /\  (
( norm `  T )  o.  ( -g `  T
) )  C_  ( dist `  T ) ) )
8448, 68, 79, 83syl3anbrc 1136 . 2  |-  ( ( N : X --> RR  /\  ( G  e.  Grp  /\  D  e.  ( Met `  X ) ) )  ->  T  e. NrmGrp )
8546, 84impbida 805 1  |-  ( N : X --> RR  ->  ( T  e. NrmGrp  <->  ( G  e. 
Grp  /\  D  e.  ( Met `  X ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    C_ wss 3152    X. cxp 4687    |` cres 4691    o. ccom 4693    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   RRcr 8736   Basecbs 13148   +g cplusg 13208   distcds 13217   TopOpenctopn 13326   Grpcgrp 14362   -gcsg 14365   Metcme 16370   MetOpencmopn 16372   MetSpcmt 17883   normcnm 18099  NrmGrpcngp 18100   toNrmGrp ctng 18101
This theorem is referenced by:  tngngpd  18169  tngngp  18170  tngnrg  18185
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-plusg 13221  df-tset 13227  df-ds 13230  df-rest 13327  df-topn 13328  df-topgen 13344  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-xms 17885  df-ms 17886  df-nm 18105  df-ngp 18106  df-tng 18107
  Copyright terms: Public domain W3C validator