Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tolat Unicode version

Theorem tolat 25389
Description: A totally ordered set is a lattice. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
tolat  |-  TosetRel  C_  LatRel

Proof of Theorem tolat
Dummy variables  v  u  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spwpr4c 14357 . . . . . . . . . . . 12  |-  ( ( x  e.  PosetRel  /\  u x v )  -> 
( x  sup w  { u ,  v } )  =  v )
21ancoms 439 . . . . . . . . . . 11  |-  ( ( u x v  /\  x  e.  PosetRel )  ->  (
x  sup w  { u ,  v } )  =  v )
3 posispre 25344 . . . . . . . . . . . . 13  |-  ( x  e.  PosetRel  ->  x  e. PresetRel )
4 eqid 2296 . . . . . . . . . . . . . 14  |-  dom  x  =  dom  x
54pre2befi2 25335 . . . . . . . . . . . . 13  |-  ( ( x  e. PresetRel  /\  u x v )  -> 
v  e.  dom  x
)
63, 5sylan 457 . . . . . . . . . . . 12  |-  ( ( x  e.  PosetRel  /\  u x v )  -> 
v  e.  dom  x
)
76ancoms 439 . . . . . . . . . . 11  |-  ( ( u x v  /\  x  e.  PosetRel )  ->  v  e.  dom  x )
82, 7eqeltrd 2370 . . . . . . . . . 10  |-  ( ( u x v  /\  x  e.  PosetRel )  ->  (
x  sup w  { u ,  v } )  e.  dom  x )
9 nfwpr4c 25388 . . . . . . . . . . . 12  |-  ( ( x  e.  PosetRel  /\  u x v )  -> 
( x  inf w  { u ,  v } )  =  u )
109ancoms 439 . . . . . . . . . . 11  |-  ( ( u x v  /\  x  e.  PosetRel )  ->  (
x  inf w  { u ,  v } )  =  u )
11 vex 2804 . . . . . . . . . . . . 13  |-  u  e. 
_V
12 vex 2804 . . . . . . . . . . . . 13  |-  v  e. 
_V
1311, 12breldm 4899 . . . . . . . . . . . 12  |-  ( u x v  ->  u  e.  dom  x )
1413adantr 451 . . . . . . . . . . 11  |-  ( ( u x v  /\  x  e.  PosetRel )  ->  u  e.  dom  x )
1510, 14eqeltrd 2370 . . . . . . . . . 10  |-  ( ( u x v  /\  x  e.  PosetRel )  ->  (
x  inf w  { u ,  v } )  e.  dom  x )
168, 15jca 518 . . . . . . . . 9  |-  ( ( u x v  /\  x  e.  PosetRel )  ->  (
( x  sup w  { u ,  v } )  e.  dom  x  /\  ( x  inf w  { u ,  v } )  e.  dom  x ) )
1716ex 423 . . . . . . . 8  |-  ( u x v  ->  (
x  e.  PosetRel  ->  (
( x  sup w  { u ,  v } )  e.  dom  x  /\  ( x  inf w  { u ,  v } )  e.  dom  x ) ) )
18 spwpr4c 14357 . . . . . . . . . . . . 13  |-  ( ( x  e.  PosetRel  /\  v
x u )  -> 
( x  sup w  { v ,  u } )  =  u )
1918ancoms 439 . . . . . . . . . . . 12  |-  ( ( v x u  /\  x  e.  PosetRel )  ->  (
x  sup w  { v ,  u } )  =  u )
204pre2befi2 25335 . . . . . . . . . . . . . 14  |-  ( ( x  e. PresetRel  /\  v
x u )  ->  u  e.  dom  x )
213, 20sylan 457 . . . . . . . . . . . . 13  |-  ( ( x  e.  PosetRel  /\  v
x u )  ->  u  e.  dom  x )
2221ancoms 439 . . . . . . . . . . . 12  |-  ( ( v x u  /\  x  e.  PosetRel )  ->  u  e.  dom  x )
2319, 22eqeltrd 2370 . . . . . . . . . . 11  |-  ( ( v x u  /\  x  e.  PosetRel )  ->  (
x  sup w  { v ,  u } )  e.  dom  x )
24 prcom 3718 . . . . . . . . . . . 12  |-  { u ,  v }  =  { v ,  u }
25 oveq2 5882 . . . . . . . . . . . . 13  |-  ( { u ,  v }  =  { v ,  u }  ->  (
x  sup w  { u ,  v } )  =  ( x  sup w  { v ,  u } ) )
2625eleq1d 2362 . . . . . . . . . . . 12  |-  ( { u ,  v }  =  { v ,  u }  ->  (
( x  sup w  { u ,  v } )  e.  dom  x 
<->  ( x  sup w  { v ,  u } )  e.  dom  x ) )
2724, 26ax-mp 8 . . . . . . . . . . 11  |-  ( ( x  sup w  {
u ,  v } )  e.  dom  x  <->  ( x  sup w  {
v ,  u }
)  e.  dom  x
)
2823, 27sylibr 203 . . . . . . . . . 10  |-  ( ( v x u  /\  x  e.  PosetRel )  ->  (
x  sup w  { u ,  v } )  e.  dom  x )
2924oveq2i 5885 . . . . . . . . . . 11  |-  ( x  inf w  { u ,  v } )  =  ( x  inf w  { v ,  u } )
30 nfwpr4c 25388 . . . . . . . . . . . . 13  |-  ( ( x  e.  PosetRel  /\  v
x u )  -> 
( x  inf w  { v ,  u } )  =  v )
3130ancoms 439 . . . . . . . . . . . 12  |-  ( ( v x u  /\  x  e.  PosetRel )  ->  (
x  inf w  { v ,  u } )  =  v )
3212, 11breldm 4899 . . . . . . . . . . . . 13  |-  ( v x u  ->  v  e.  dom  x )
3332adantr 451 . . . . . . . . . . . 12  |-  ( ( v x u  /\  x  e.  PosetRel )  ->  v  e.  dom  x )
3431, 33eqeltrd 2370 . . . . . . . . . . 11  |-  ( ( v x u  /\  x  e.  PosetRel )  ->  (
x  inf w  { v ,  u } )  e.  dom  x )
3529, 34syl5eqel 2380 . . . . . . . . . 10  |-  ( ( v x u  /\  x  e.  PosetRel )  ->  (
x  inf w  { u ,  v } )  e.  dom  x )
3628, 35jca 518 . . . . . . . . 9  |-  ( ( v x u  /\  x  e.  PosetRel )  ->  (
( x  sup w  { u ,  v } )  e.  dom  x  /\  ( x  inf w  { u ,  v } )  e.  dom  x ) )
3736ex 423 . . . . . . . 8  |-  ( v x u  ->  (
x  e.  PosetRel  ->  (
( x  sup w  { u ,  v } )  e.  dom  x  /\  ( x  inf w  { u ,  v } )  e.  dom  x ) ) )
3817, 37jaoi 368 . . . . . . 7  |-  ( ( u x v  \/  v x u )  ->  ( x  e.  PosetRel 
->  ( ( x  sup w  { u ,  v } )  e.  dom  x  /\  ( x  inf w  { u ,  v } )  e.  dom  x ) ) )
3938com12 27 . . . . . 6  |-  ( x  e.  PosetRel  ->  ( ( u x v  \/  v
x u )  -> 
( ( x  sup w  { u ,  v } )  e.  dom  x  /\  ( x  inf w  { u ,  v } )  e.  dom  x ) ) )
4039ralimdv 2635 . . . . 5  |-  ( x  e.  PosetRel  ->  ( A. v  e.  dom  x ( u x v  \/  v
x u )  ->  A. v  e.  dom  x ( ( x  sup w  { u ,  v } )  e.  dom  x  /\  ( x  inf w  {
u ,  v } )  e.  dom  x
) ) )
4140ralimdv 2635 . . . 4  |-  ( x  e.  PosetRel  ->  ( A. u  e.  dom  x A. v  e.  dom  x ( u x v  \/  v
x u )  ->  A. u  e.  dom  x A. v  e.  dom  x ( ( x  sup w  { u ,  v } )  e.  dom  x  /\  ( x  inf w  {
u ,  v } )  e.  dom  x
) ) )
4241imdistani 671 . . 3  |-  ( ( x  e.  PosetRel  /\  A. u  e.  dom  x A. v  e.  dom  x ( u x v  \/  v x u ) )  ->  ( x  e. 
PosetRel  /\  A. u  e. 
dom  x A. v  e.  dom  x ( ( x  sup w  {
u ,  v } )  e.  dom  x  /\  ( x  inf w  { u ,  v } )  e.  dom  x ) ) )
434istsr2 14343 . . 3  |-  ( x  e.  TosetRel 
<->  ( x  e.  PosetRel  /\  A. u  e.  dom  x A. v  e.  dom  x ( u x v  \/  v x u ) ) )
444isla 14358 . . 3  |-  ( x  e.  LatRel 
<->  ( x  e.  PosetRel  /\  A. u  e.  dom  x A. v  e.  dom  x ( ( x  sup w  { u ,  v } )  e.  dom  x  /\  ( x  inf w  {
u ,  v } )  e.  dom  x
) ) )
4542, 43, 443imtr4i 257 . 2  |-  ( x  e.  TosetRel  ->  x  e.  LatRel )
4645ssriv 3197 1  |-  TosetRel  C_  LatRel
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556    C_ wss 3165   {cpr 3654   class class class wbr 4039   dom cdm 4705  (class class class)co 5874   PosetRelcps 14317    TosetRel ctsr 14318    sup
w cspw 14319    inf
w cinf 14320   LatRelcla 14321  PresetRelcpresetrel 25318
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-ps 14322  df-tsr 14323  df-spw 14324  df-nfw 14325  df-lar 14326  df-prs 25326
  Copyright terms: Public domain W3C validator