Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topfneec2 Unicode version

Theorem topfneec2 26395
Description: A topology is precisely identified with its equivalence class. (Contributed by Jeff Hankins, 12-Oct-2009.)
Hypothesis
Ref Expression
topfneec2.1  |-  .~  =  ( Fne  i^i  `' Fne )
Assertion
Ref Expression
topfneec2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( [ J ]  .~  =  [ K ]  .~  <->  J  =  K
) )

Proof of Theorem topfneec2
StepHypRef Expression
1 topfneec2.1 . . 3  |-  .~  =  ( Fne  i^i  `' Fne )
21fneval 26390 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  .~  K  <->  (
topGen `  J )  =  ( topGen `  K )
) )
31fneer 26391 . . . 4  |-  .~  Er  _V
43a1i 10 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  .~  Er  _V )
5 elex 2809 . . . 4  |-  ( J  e.  Top  ->  J  e.  _V )
65adantr 451 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  J  e.  _V )
74, 6erth 6720 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  .~  K  <->  [ J ]  .~  =  [ K ]  .~  )
)
8 tgtop 16727 . . 3  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
9 tgtop 16727 . . 3  |-  ( K  e.  Top  ->  ( topGen `
 K )  =  K )
108, 9eqeqan12d 2311 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( ( topGen `  J
)  =  ( topGen `  K )  <->  J  =  K ) )
112, 7, 103bitr3d 274 1  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( [ J ]  .~  =  [ K ]  .~  <->  J  =  K
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801    i^i cin 3164   class class class wbr 4039   `'ccnv 4704   ` cfv 5271    Er wer 6673   [cec 6674   topGenctg 13358   Topctop 16647   Fnecfne 26362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fv 5279  df-er 6676  df-ec 6678  df-topgen 13360  df-top 16652  df-fne 26366
  Copyright terms: Public domain W3C validator