MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponcom Structured version   Unicode version

Theorem toponcom 16985
Description: If  K is a topology on the base set of topology  J, then  J is a topology on the base of  K. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
toponcom  |-  ( ( J  e.  Top  /\  K  e.  (TopOn `  U. J ) )  ->  J  e.  (TopOn `  U. K ) )

Proof of Theorem toponcom
StepHypRef Expression
1 toponuni 16982 . . . 4  |-  ( K  e.  (TopOn `  U. J )  ->  U. J  =  U. K )
21eqcomd 2440 . . 3  |-  ( K  e.  (TopOn `  U. J )  ->  U. K  =  U. J )
32anim2i 553 . 2  |-  ( ( J  e.  Top  /\  K  e.  (TopOn `  U. J ) )  -> 
( J  e.  Top  /\ 
U. K  =  U. J ) )
4 istopon 16980 . 2  |-  ( J  e.  (TopOn `  U. K )  <->  ( J  e.  Top  /\  U. K  =  U. J ) )
53, 4sylibr 204 1  |-  ( ( J  e.  Top  /\  K  e.  (TopOn `  U. J ) )  ->  J  e.  (TopOn `  U. K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   U.cuni 4007   ` cfv 5446   Topctop 16948  TopOnctopon 16949
This theorem is referenced by:  kgencn3  17580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-iota 5410  df-fun 5448  df-fv 5454  df-topon 16956
  Copyright terms: Public domain W3C validator