MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  torsubg Structured version   Unicode version

Theorem torsubg 15471
Description: The set of all elements of finite order forms a subgroup of any abelian group, called the torsion subgroup. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypothesis
Ref Expression
torsubg.1  |-  O  =  ( od `  G
)
Assertion
Ref Expression
torsubg  |-  ( G  e.  Abel  ->  ( `' O " NN )  e.  (SubGrp `  G
) )

Proof of Theorem torsubg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5226 . . . 4  |-  ( `' O " NN ) 
C_  dom  O
2 eqid 2438 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
3 torsubg.1 . . . . . 6  |-  O  =  ( od `  G
)
42, 3odf 15177 . . . . 5  |-  O :
( Base `  G ) --> NN0
54fdmi 5598 . . . 4  |-  dom  O  =  ( Base `  G
)
61, 5sseqtri 3382 . . 3  |-  ( `' O " NN ) 
C_  ( Base `  G
)
76a1i 11 . 2  |-  ( G  e.  Abel  ->  ( `' O " NN ) 
C_  ( Base `  G
) )
8 ablgrp 15419 . . . . 5  |-  ( G  e.  Abel  ->  G  e. 
Grp )
9 eqid 2438 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
102, 9grpidcl 14835 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( Base `  G
) )
118, 10syl 16 . . . 4  |-  ( G  e.  Abel  ->  ( 0g
`  G )  e.  ( Base `  G
) )
123, 9od1 15197 . . . . . 6  |-  ( G  e.  Grp  ->  ( O `  ( 0g `  G ) )  =  1 )
138, 12syl 16 . . . . 5  |-  ( G  e.  Abel  ->  ( O `
 ( 0g `  G ) )  =  1 )
14 1nn 10013 . . . . 5  |-  1  e.  NN
1513, 14syl6eqel 2526 . . . 4  |-  ( G  e.  Abel  ->  ( O `
 ( 0g `  G ) )  e.  NN )
16 ffn 5593 . . . . . 6  |-  ( O : ( Base `  G
) --> NN0  ->  O  Fn  ( Base `  G )
)
174, 16ax-mp 8 . . . . 5  |-  O  Fn  ( Base `  G )
18 elpreima 5852 . . . . 5  |-  ( O  Fn  ( Base `  G
)  ->  ( ( 0g `  G )  e.  ( `' O " NN )  <->  ( ( 0g
`  G )  e.  ( Base `  G
)  /\  ( O `  ( 0g `  G
) )  e.  NN ) ) )
1917, 18ax-mp 8 . . . 4  |-  ( ( 0g `  G )  e.  ( `' O " NN )  <->  ( ( 0g `  G )  e.  ( Base `  G
)  /\  ( O `  ( 0g `  G
) )  e.  NN ) )
2011, 15, 19sylanbrc 647 . . 3  |-  ( G  e.  Abel  ->  ( 0g
`  G )  e.  ( `' O " NN ) )
21 ne0i 3636 . . 3  |-  ( ( 0g `  G )  e.  ( `' O " NN )  ->  ( `' O " NN )  =/=  (/) )
2220, 21syl 16 . 2  |-  ( G  e.  Abel  ->  ( `' O " NN )  =/=  (/) )
238ad2antrr 708 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  G  e.  Grp )
246sseli 3346 . . . . . . . 8  |-  ( x  e.  ( `' O " NN )  ->  x  e.  ( Base `  G
) )
2524ad2antlr 709 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  x  e.  ( Base `  G
) )
266sseli 3346 . . . . . . . 8  |-  ( y  e.  ( `' O " NN )  ->  y  e.  ( Base `  G
) )
2726adantl 454 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  y  e.  ( Base `  G
) )
28 eqid 2438 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
292, 28grpcl 14820 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
3023, 25, 27, 29syl3anc 1185 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
31 0nnn 10033 . . . . . . . . 9  |-  -.  0  e.  NN
322, 3odcl 15176 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( Base `  G
)  ->  ( O `  x )  e.  NN0 )
3325, 32syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  x )  e.  NN0 )
3433nn0zd 10375 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  x )  e.  ZZ )
352, 3odcl 15176 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( Base `  G
)  ->  ( O `  y )  e.  NN0 )
3627, 35syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  y )  e.  NN0 )
3736nn0zd 10375 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  y )  e.  ZZ )
3834, 37gcdcld 13020 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  x
)  gcd  ( O `  y ) )  e. 
NN0 )
3938nn0cnd 10278 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  x
)  gcd  ( O `  y ) )  e.  CC )
4039mul02d 9266 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
0  x.  ( ( O `  x )  gcd  ( O `  y ) ) )  =  0 )
4140breq1d 4224 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( 0  x.  (
( O `  x
)  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) )  <->  0  ||  ( ( O `  x )  x.  ( O `  y )
) ) )
4234, 37zmulcld 10383 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  x
)  x.  ( O `
 y ) )  e.  ZZ )
43 0dvds 12872 . . . . . . . . . . . 12  |-  ( ( ( O `  x
)  x.  ( O `
 y ) )  e.  ZZ  ->  (
0  ||  ( ( O `  x )  x.  ( O `  y
) )  <->  ( ( O `  x )  x.  ( O `  y
) )  =  0 ) )
4442, 43syl 16 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
0  ||  ( ( O `  x )  x.  ( O `  y
) )  <->  ( ( O `  x )  x.  ( O `  y
) )  =  0 ) )
4541, 44bitrd 246 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( 0  x.  (
( O `  x
)  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) )  <->  ( ( O `  x )  x.  ( O `  y
) )  =  0 ) )
46 elpreima 5852 . . . . . . . . . . . . . . 15  |-  ( O  Fn  ( Base `  G
)  ->  ( x  e.  ( `' O " NN )  <->  ( x  e.  ( Base `  G
)  /\  ( O `  x )  e.  NN ) ) )
4717, 46ax-mp 8 . . . . . . . . . . . . . 14  |-  ( x  e.  ( `' O " NN )  <->  ( x  e.  ( Base `  G
)  /\  ( O `  x )  e.  NN ) )
4847simprbi 452 . . . . . . . . . . . . 13  |-  ( x  e.  ( `' O " NN )  ->  ( O `  x )  e.  NN )
4948ad2antlr 709 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  x )  e.  NN )
50 elpreima 5852 . . . . . . . . . . . . . . 15  |-  ( O  Fn  ( Base `  G
)  ->  ( y  e.  ( `' O " NN )  <->  ( y  e.  ( Base `  G
)  /\  ( O `  y )  e.  NN ) ) )
5117, 50ax-mp 8 . . . . . . . . . . . . . 14  |-  ( y  e.  ( `' O " NN )  <->  ( y  e.  ( Base `  G
)  /\  ( O `  y )  e.  NN ) )
5251simprbi 452 . . . . . . . . . . . . 13  |-  ( y  e.  ( `' O " NN )  ->  ( O `  y )  e.  NN )
5352adantl 454 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  y )  e.  NN )
5449, 53nnmulcld 10049 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  x
)  x.  ( O `
 y ) )  e.  NN )
55 eleq1 2498 . . . . . . . . . . 11  |-  ( ( ( O `  x
)  x.  ( O `
 y ) )  =  0  ->  (
( ( O `  x )  x.  ( O `  y )
)  e.  NN  <->  0  e.  NN ) )
5654, 55syl5ibcom 213 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( ( O `  x )  x.  ( O `  y )
)  =  0  -> 
0  e.  NN ) )
5745, 56sylbid 208 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( 0  x.  (
( O `  x
)  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) )  ->  0  e.  NN ) )
5831, 57mtoi 172 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  -.  ( 0  x.  (
( O `  x
)  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) ) )
59 simpll 732 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  G  e.  Abel )
603, 2, 28odadd1 15465 . . . . . . . . . 10  |-  ( ( G  e.  Abel  /\  x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  ->  ( ( O `  ( x
( +g  `  G ) y ) )  x.  ( ( O `  x )  gcd  ( O `  y )
) )  ||  (
( O `  x
)  x.  ( O `
 y ) ) )
6159, 25, 27, 60syl3anc 1185 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  (
x ( +g  `  G
) y ) )  x.  ( ( O `
 x )  gcd  ( O `  y
) ) )  ||  ( ( O `  x )  x.  ( O `  y )
) )
62 oveq1 6090 . . . . . . . . . 10  |-  ( ( O `  ( x ( +g  `  G
) y ) )  =  0  ->  (
( O `  (
x ( +g  `  G
) y ) )  x.  ( ( O `
 x )  gcd  ( O `  y
) ) )  =  ( 0  x.  (
( O `  x
)  gcd  ( O `  y ) ) ) )
6362breq1d 4224 . . . . . . . . 9  |-  ( ( O `  ( x ( +g  `  G
) y ) )  =  0  ->  (
( ( O `  ( x ( +g  `  G ) y ) )  x.  ( ( O `  x )  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) )  <->  ( 0  x.  ( ( O `
 x )  gcd  ( O `  y
) ) )  ||  ( ( O `  x )  x.  ( O `  y )
) ) )
6461, 63syl5ibcom 213 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  (
x ( +g  `  G
) y ) )  =  0  ->  (
0  x.  ( ( O `  x )  gcd  ( O `  y ) ) ) 
||  ( ( O `
 x )  x.  ( O `  y
) ) ) )
6558, 64mtod 171 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  -.  ( O `  ( x ( +g  `  G
) y ) )  =  0 )
662, 3odcl 15176 . . . . . . . . . 10  |-  ( ( x ( +g  `  G
) y )  e.  ( Base `  G
)  ->  ( O `  ( x ( +g  `  G ) y ) )  e.  NN0 )
6730, 66syl 16 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  ( x
( +g  `  G ) y ) )  e. 
NN0 )
68 elnn0 10225 . . . . . . . . 9  |-  ( ( O `  ( x ( +g  `  G
) y ) )  e.  NN0  <->  ( ( O `
 ( x ( +g  `  G ) y ) )  e.  NN  \/  ( O `
 ( x ( +g  `  G ) y ) )  =  0 ) )
6967, 68sylib 190 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
( O `  (
x ( +g  `  G
) y ) )  e.  NN  \/  ( O `  ( x
( +g  `  G ) y ) )  =  0 ) )
7069ord 368 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( -.  ( O `  (
x ( +g  `  G
) y ) )  e.  NN  ->  ( O `  ( x
( +g  `  G ) y ) )  =  0 ) )
7165, 70mt3d 120 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  ( O `  ( x
( +g  `  G ) y ) )  e.  NN )
72 elpreima 5852 . . . . . . 7  |-  ( O  Fn  ( Base `  G
)  ->  ( (
x ( +g  `  G
) y )  e.  ( `' O " NN )  <->  ( ( x ( +g  `  G
) y )  e.  ( Base `  G
)  /\  ( O `  ( x ( +g  `  G ) y ) )  e.  NN ) ) )
7317, 72ax-mp 8 . . . . . 6  |-  ( ( x ( +g  `  G
) y )  e.  ( `' O " NN )  <->  ( ( x ( +g  `  G
) y )  e.  ( Base `  G
)  /\  ( O `  ( x ( +g  `  G ) y ) )  e.  NN ) )
7430, 71, 73sylanbrc 647 . . . . 5  |-  ( ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  /\  y  e.  ( `' O " NN ) )  ->  (
x ( +g  `  G
) y )  e.  ( `' O " NN ) )
7574ralrimiva 2791 . . . 4  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  A. y  e.  ( `' O " NN ) ( x ( +g  `  G ) y )  e.  ( `' O " NN ) )
76 eqid 2438 . . . . . . 7  |-  ( inv g `  G )  =  ( inv g `  G )
772, 76grpinvcl 14852 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( ( inv g `  G ) `  x
)  e.  ( Base `  G ) )
788, 24, 77syl2an 465 . . . . 5  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  (
( inv g `  G ) `  x
)  e.  ( Base `  G ) )
793, 76, 2odinv 15199 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( O `  (
( inv g `  G ) `  x
) )  =  ( O `  x ) )
808, 24, 79syl2an 465 . . . . . 6  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  ( O `  ( ( inv g `  G ) `
 x ) )  =  ( O `  x ) )
8148adantl 454 . . . . . 6  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  ( O `  x )  e.  NN )
8280, 81eqeltrd 2512 . . . . 5  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  ( O `  ( ( inv g `  G ) `
 x ) )  e.  NN )
83 elpreima 5852 . . . . . 6  |-  ( O  Fn  ( Base `  G
)  ->  ( (
( inv g `  G ) `  x
)  e.  ( `' O " NN )  <-> 
( ( ( inv g `  G ) `
 x )  e.  ( Base `  G
)  /\  ( O `  ( ( inv g `  G ) `  x
) )  e.  NN ) ) )
8417, 83ax-mp 8 . . . . 5  |-  ( ( ( inv g `  G ) `  x
)  e.  ( `' O " NN )  <-> 
( ( ( inv g `  G ) `
 x )  e.  ( Base `  G
)  /\  ( O `  ( ( inv g `  G ) `  x
) )  e.  NN ) )
8578, 82, 84sylanbrc 647 . . . 4  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  (
( inv g `  G ) `  x
)  e.  ( `' O " NN ) )
8675, 85jca 520 . . 3  |-  ( ( G  e.  Abel  /\  x  e.  ( `' O " NN ) )  ->  ( A. y  e.  ( `' O " NN ) ( x ( +g  `  G ) y )  e.  ( `' O " NN )  /\  (
( inv g `  G ) `  x
)  e.  ( `' O " NN ) ) )
8786ralrimiva 2791 . 2  |-  ( G  e.  Abel  ->  A. x  e.  ( `' O " NN ) ( A. y  e.  ( `' O " NN ) ( x ( +g  `  G ) y )  e.  ( `' O " NN )  /\  ( ( inv g `  G ) `
 x )  e.  ( `' O " NN ) ) )
882, 28, 76issubg2 14961 . . 3  |-  ( G  e.  Grp  ->  (
( `' O " NN )  e.  (SubGrp `  G )  <->  ( ( `' O " NN ) 
C_  ( Base `  G
)  /\  ( `' O " NN )  =/=  (/)  /\  A. x  e.  ( `' O " NN ) ( A. y  e.  ( `' O " NN ) ( x ( +g  `  G ) y )  e.  ( `' O " NN )  /\  ( ( inv g `  G ) `
 x )  e.  ( `' O " NN ) ) ) ) )
898, 88syl 16 . 2  |-  ( G  e.  Abel  ->  ( ( `' O " NN )  e.  (SubGrp `  G
)  <->  ( ( `' O " NN ) 
C_  ( Base `  G
)  /\  ( `' O " NN )  =/=  (/)  /\  A. x  e.  ( `' O " NN ) ( A. y  e.  ( `' O " NN ) ( x ( +g  `  G ) y )  e.  ( `' O " NN )  /\  ( ( inv g `  G ) `
 x )  e.  ( `' O " NN ) ) ) ) )
907, 22, 87, 89mpbir3and 1138 1  |-  ( G  e.  Abel  ->  ( `' O " NN )  e.  (SubGrp `  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707    C_ wss 3322   (/)c0 3630   class class class wbr 4214   `'ccnv 4879   dom cdm 4880   "cima 4883    Fn wfn 5451   -->wf 5452   ` cfv 5456  (class class class)co 6083   0cc0 8992   1c1 8993    x. cmul 8997   NNcn 10002   NN0cn0 10223   ZZcz 10284    || cdivides 12854    gcd cgcd 13008   Basecbs 13471   +g cplusg 13531   0gc0g 13725   Grpcgrp 14687   inv gcminusg 14688  SubGrpcsubg 14940   odcod 15165   Abelcabel 15415
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-sup 7448  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-n0 10224  df-z 10285  df-uz 10491  df-rp 10615  df-fz 11046  df-fzo 11138  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-dvds 12855  df-gcd 13009  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-0g 13729  df-mnd 14692  df-grp 14814  df-minusg 14815  df-sbg 14816  df-mulg 14817  df-subg 14943  df-od 15169  df-cmn 15416  df-abl 15417
  Copyright terms: Public domain W3C validator