Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpass Structured version   Unicode version

Theorem tpass 3902
 Description: Split off the first element of an unordered triple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
tpass

Proof of Theorem tpass
StepHypRef Expression
1 df-tp 3822 . 2
2 tprot 3899 . 2
3 uncom 3491 . 2
41, 2, 33eqtr4i 2466 1
 Colors of variables: wff set class Syntax hints:   wceq 1652   cun 3318  csn 3814  cpr 3815  ctp 3816 This theorem is referenced by:  qdassr  3904  en3  7345  wuntp  8586  ex-pw  21737 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-un 3325  df-sn 3820  df-pr 3821  df-tp 3822
 Copyright terms: Public domain W3C validator