Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpeq123d Structured version   Unicode version

Theorem tpeq123d 3898
 Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
Hypotheses
Ref Expression
tpeq1d.1
tpeq123d.2
tpeq123d.3
Assertion
Ref Expression
tpeq123d

Proof of Theorem tpeq123d
StepHypRef Expression
1 tpeq1d.1 . . 3
21tpeq1d 3895 . 2
3 tpeq123d.2 . . 3
43tpeq2d 3896 . 2
5 tpeq123d.3 . . 3
65tpeq3d 3897 . 2
72, 4, 63eqtrd 2472 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652  ctp 3816 This theorem is referenced by:  fz0tp  11103  fzo0to3tp  11185  prdsval  13678  imasval  13737  fucval  14155  fucpropd  14174  setcval  14232  catcval  14251  xpcval  14274  symgval  15094  psrval  16429  om1val  19055  usgraexvlem  21414  rabren3dioph  26876  mendval  27468  ldualset  29923  erngfset  31596  erngfset-rN  31604  dvafset  31801  dvaset  31802  dvhfset  31878  dvhset  31879  hlhilset  32735 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-un 3325  df-sn 3820  df-pr 3821  df-tp 3822
 Copyright terms: Public domain W3C validator