MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpid1 Structured version   Unicode version

Theorem tpid1 3941
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypothesis
Ref Expression
tpid1.1  |-  A  e. 
_V
Assertion
Ref Expression
tpid1  |-  A  e. 
{ A ,  B ,  C }

Proof of Theorem tpid1
StepHypRef Expression
1 eqid 2442 . . 3  |-  A  =  A
213mix1i 1130 . 2  |-  ( A  =  A  \/  A  =  B  \/  A  =  C )
3 tpid1.1 . . 3  |-  A  e. 
_V
43eltp 3877 . 2  |-  ( A  e.  { A ,  B ,  C }  <->  ( A  =  A  \/  A  =  B  \/  A  =  C )
)
52, 4mpbir 202 1  |-  A  e. 
{ A ,  B ,  C }
Colors of variables: wff set class
Syntax hints:    \/ w3o 936    = wceq 1653    e. wcel 1727   _Vcvv 2962   {ctp 3840
This theorem is referenced by:  tpnz  3949  2pthlem2  21627  kur14lem7  24929  kur14lem9  24931  brtpid1  25209  rabren3dioph  26914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-v 2964  df-un 3311  df-sn 3844  df-pr 3845  df-tp 3846
  Copyright terms: Public domain W3C validator