MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpid2 Unicode version

Theorem tpid2 3753
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypothesis
Ref Expression
tpid2.1  |-  B  e. 
_V
Assertion
Ref Expression
tpid2  |-  B  e. 
{ A ,  B ,  C }

Proof of Theorem tpid2
StepHypRef Expression
1 eqid 2296 . . 3  |-  B  =  B
213mix2i 1128 . 2  |-  ( B  =  A  \/  B  =  B  \/  B  =  C )
3 tpid2.1 . . 3  |-  B  e. 
_V
43eltp 3691 . 2  |-  ( B  e.  { A ,  B ,  C }  <->  ( B  =  A  \/  B  =  B  \/  B  =  C )
)
52, 4mpbir 200 1  |-  B  e. 
{ A ,  B ,  C }
Colors of variables: wff set class
Syntax hints:    \/ w3o 933    = wceq 1632    e. wcel 1696   _Vcvv 2801   {ctp 3655
This theorem is referenced by:  kur14lem7  23758  brtpid2  24091  pfsubkl  26150  pgapspf  26155  pgapspf2  26156  rabren3dioph  27001
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-un 3170  df-sn 3659  df-pr 3660  df-tp 3661
  Copyright terms: Public domain W3C validator